### Recent Comments

Muhamed on In And Around Combinatorics: T… Ehud on Ehud Friedgut: Blissful ignora… wvandernoort on Ehud Friedgut: Blissful ignora… Yiftach Barnea on Test your intuition 24: Which… Gil Kalai on Test your intuition 24: Which… Yiftach Barnea on Test your intuition 24: Which… Yiftach Barnea on Test your intuition 24: Which… Gil Kalai on Test your intuition 24: Which… Gil Kalai on Test your intuition 24: Which… Gabor Pete on Test your intuition 24: Which… chun-xuan jiang on Polymath 8 – a Succ… domotorp on Test your intuition 24: Which… -
### Recent Posts

- Test your intuition 24: Which of the following three groups is trivial
- School Starts at HUJI
- A lecture by Noga
- Ehud Friedgut: Blissful ignorance and the Kahneman-Tversky paradox
- In And Around Combinatorics: The 18th Midrasha Mathematicae. Jerusalem, JANUARY 18-31
- Mathematical Gymnastics
- Media Item from “Haaretz” Today: “For the first time ever…”
- Jim Geelen, Bert Gerards, and Geoﬀ Whittle Solved Rota’s Conjecture on Matroids
- Media items on David, Amnon, and Nathan

### Top Posts & Pages

- Test your intuition 24: Which of the following three groups is trivial
- Believing that the Earth is Round When it Matters
- Can Category Theory Serve as the Foundation of Mathematics?
- In how many ways you can chose a committee of three students from a class of ten students?
- A lecture by Noga
- When It Rains It Pours
- Answer: Lord Kelvin, The Age of the Earth, and the Age of the Sun
- Happy Birthday Ron Aharoni!
- Lawler-Kozdron-Richards-Stroock's combined Proof for the Matrix-Tree theorem and Wilson's Theorem

### RSS

# Monthly Archives: May 2009

## Some Philosophy of Science

The Bayesian approach to the philosophy of science was developed in the first half of the twentieth century. Karl Popper and Thomas Kuhn are twentieth-century philosophers of science who later proposed alternative approaches. It will be convenient to start with … Continue reading

Posted in Philosophy, Probability
14 Comments

## A Workshop for Advanced Undergraduate Students, Sept 6-17 2009

סדנא לתלמידי בוגר מצטיינים במתמטיקה מכון איינשטיין למתמטיקה, האוניברסיטה העברית בירושלים יום א’ י”ז אלול – יום ה’ כ”ח אלול תשס”ט 6-17/9/09 המכון למתמטיקה של האוניברסיטה העברית מזמין תלמידי מתמטיקה מצטיינים המסיימים שנה ב’ או ג’ של … Continue reading

Posted in Uncategorized
1 Comment

## Answer to Test Your Intuition (3)

Question: Let be the -dimensional cube. Turn into a torus by identifying opposite facets. What is the minumum -dimensional volume of a subset of which intersects every non-trivial cycle in . Answer: Taking to be all points in the solid … Continue reading

## How Large can a Spherical Set Without Two Orthogonal Vectors Be?

The problem Witsenhausen’s Problem (1974): Let be a measurable subset of the -dimensional sphere . Suppose that does not contain two orthogonal vectors. How large can the -dimensional volume of be? A Conjecture Conjecture: The maximum volume is attained … Continue reading

Posted in Open problems
4 Comments

## Extremal Combinatorics VI: The Frankl-Wilson Theorem

Rick Wilson The Frankl-Wilson theorem is a remarkable theorem with many amazing applications. It has several proofs, all based on linear algebra methods (also referred to as dimension arguments). The original proof is based on a careful study of incidence … Continue reading

## Recent and Future Excitements

It is very hectic around here and on top of the eight or so regular research seminars at math (and quite a few more at CS) we have many visitors as school terms at the US are over. A week … Continue reading

Posted in Updates
Leave a comment

## The Cap-Set Problem and Frankl-Rodl Theorem (C)

Update: This is a third of three posts (part I, part II) proposing some extensions of the cap set problem and some connections with the Frankl Rodl theorem. Here is a post presenting the problem on Terry Tao’s blog (March 2007). Here … Continue reading

Posted in Combinatorics, Open problems
Tagged Cap sets, Frankl-Rodl theorem, polymath1
Leave a comment

## Ehud Friedgut: Murphy’s Law of Breastfeeding Twins

This post is authored by Ehud Friedgut. Congratulations to Keren, Ehud and Michal for the birth of Shiri and Hillel! Murphy’s law of breastfeeding twins, like all of Murphy’s laws, is supported by strong empirical evidence. The twins’ feeding rhythm … Continue reading

Posted in Guest blogger
9 Comments

## The Amitsur-Levitzki Theorem for a Non Mathematician.

Yaacov Levitzki The purpose of this post is to describe the Amitsur-Levitzki theorem: It is meant for people who are not necessarily mathematicians. Yet they need to know two things. The first is what matrices are. Very briefly, matrices are rectangular arrays … Continue reading

Posted in Algebra and Number Theory
Tagged Alex Levitzki. Yaacov Levitzki, Shimshon Amitsur
7 Comments