Category Archives: Combinatorics

New Ramanujan Graphs!

Margulis’ paper Ramanujan graphs were constructed independently by Margulis and by Lubotzky, Philips and Sarnak (who also coined the name). The picture above shows Margulis’ paper where the graphs are defined and their girth is studied. (I will come back to the question … Continue reading

Posted in Algebra and Number Theory, Combinatorics, Open problems | Tagged | 10 Comments

Andrei

Andrei Zelevinsky passed away a week ago on April 10, 2013, shortly after turning sixty. Andrei was a great mathematician and a great person. I first met him in a combinatorics conference in Stockholm 1989. This was the first major … Continue reading

Posted in Algebra and Number Theory, Combinatorics, Obituary | Tagged | 5 Comments

Test Your Intuition (19): The Advantage of the Proposers in the Stable Matching Algorithm

Stable mariage The Gale-Shapley stable matching theorem and the algorithm. GALE-SHAPLEY THEOREM Consider a society of n men and n women and suppose that every man [and every woman] have a preference (linear) relation on the women [men] he [she] knows. Then … Continue reading

Posted in Combinatorics, Games, Probability, Test your intuition | Tagged , , , , , , | 7 Comments

Erdős’ Birthday

Paul Erdős was born on March 26, 1913 2013 a hundred years ago. This picture (from Ehud Friedgut’s homepage) was taken in September ’96 in a Chinese restaurant in Warsaw, a few days before Paul Erdős passed away. The other diners are Svante Janson, Tomasz Łuczack and … Continue reading

Posted in Combinatorics | Tagged | 3 Comments

F ≤ 4E

1. E ≤ 3V Let G be a simple planar graph with V vertices and E edges. It follows from Euler’s theorem that E ≤ 3V In fact, we have (when V is at least 3,) that E ≤ 3V – 6. … Continue reading

Posted in Combinatorics, Convex polytopes, Geometry, Open problems | Tagged | 12 Comments

Lionel Pournin found a combinatorial proof for Sleator-Tarjan-Thurston diameter result

I just saw in Claire Mathieu’s blog  “A CS professor blog” that a simple proof of the Sleator-Tarjan-Thurston’s diameter result for the graph of the associahedron was found by Lionel Pournin! Here are slides of his lecture “The diameters of associahedra” … Continue reading

Posted in Combinatorics, Computer Science and Optimization, Convex polytopes | Tagged , | 1 Comment

Happy Birthday Ron Aharoni!

Ron Aharoni, one of Israel’s and the world’s leading combinatorialists celebrated his birthday last month. This is a wonderful opportunity to tell you about a few of the things that Ron did mainly around matching theory. Menger’s theorem for infinite … Continue reading

Posted in Combinatorics, Happy birthday | Tagged , , , , | 1 Comment

The Quantum Debate is Over! (and other Updates)

Quid est noster computationis mundus? Nine months after is started, (much longer than expected,) and after eight posts on GLL, (much more than planned,)  and almost a thousand comments of overall good quality,   from quite a few participants, my … Continue reading

Posted in Combinatorics, Computer Science and Optimization, Controversies and debates, Updates | Tagged , , | 3 Comments

Looking Again at Erdős’ Discrepancy Problem

Over Gowers’s blog Tim and I will make an attempt to revisit polymath5. Last Autumn I prepared three posts on the problems and we decided to launch them now. The first post is here. Here is a related MathOverflow question. … Continue reading

Posted in Combinatorics, Mathematics over the Internet, Open problems | 2 Comments

Tokyo, Kyoto, and Nagoya

Near Nagoya: Firework festival; Kyoto: with Gunter Ziegler; with Takayuki Hibi, Hibi, Marge Bayer, Curtis Green and Richard Stanly; Tokyo: Peter Frankl; crowded crossing. Added later: Mazi and I at the same restaurant taken by Stanley. I just returned from … Continue reading

Posted in Combinatorics, Conferences, Convex polytopes | Tagged , , , | 2 Comments