# Category Archives: Combinatorics

## Discrepancy, The Beck-Fiala Theorem, and the Answer to “Test Your Intuition (14)”

The Question Suppose that you want to send a message so that it will reach all vertices of the discrete -dimensional cube. At each time unit (or round) you can send the message to one vertex. When a vertex gets the … Continue reading

## Test Your Intuition (14): A Discrete Transmission Problem

Recall that the -dimensional discrete cube is the set of all binary vectors ( vectors) of length n. We say that two binary vectors are adjacent if they differ in precisely one coordinate. (In other words, their Hamming distance is 1.) This … Continue reading

Posted in Combinatorics, Test your intuition | Tagged , | 35 Comments

In a recent post I mentioned quite a few remarkable recent developments in combinatorics. Let me mention a couple more. Independent sets in regular graphs A challenging conjecture by Noga Alon and Jeff Kahn in graph theory was about the number of … Continue reading

## Around Borsuk’s Conjecture 1: Some Problems

Greetings to all! Karol Borsuk conjectured in 1933 that every bounded set in can be covered by sets of smaller diameter. In a previous post I described the counterexample found by Jeff Kahn and me. I will devote a few posts … Continue reading

Posted in Combinatorics, Convexity | Tagged | 7 Comments

## The Combinatorics of Cocycles and Borsuk’s Problem.

Cocycles Definition:  A -cocycle is a collection of -subsets such that every -set contains an even number of sets in the collection. Alternative definition: Start with a collection of -sets and consider all -sets that contain an odd number of members … Continue reading

## Roth’s Theorem: Tom Sanders Reaches the Logarithmic Barrier

Click here for the most recent polymath3 research thread. I missed Tom by a few minutes at Mittag-Leffler Institute a year and a half ago Suppose that  is a subset of of maximum cardinality not containing an arithmetic progression of length 3. Let . … Continue reading

Posted in Combinatorics, Open problems | | 9 Comments

## János Pach: Guth and Katz’s Solution of Erdős’s Distinct Distances Problem

Click here for the most recent polymath3 research thread. Erdős and Pach celebrating another November day many years ago. The Wolf disguised as Little Red Riding Hood. Pach disguised as another Pach. This post is authored by János Pach A … Continue reading

Posted in Combinatorics, Geometry, Guest blogger, Open problems | Tagged , | 13 Comments

## Octonions to the Rescue

Xavier Dahan and Jean-Pierre Tillich’s Octonion-based Ramanujan Graphs with High Girth. Update (February 2012): Non associative computations can be trickier than we expect. Unfortunately, the paper by Dahan and Tillich turned out to be incorrect. Update: There is more to … Continue reading

## The Simonovits-Sos Conjecture was Proved by Ellis, Filmus and Friedgut

Simonovits and Sos asked: Let be a family of graphs with N={1,2,…,n} as the set of vertices. Suppose that every two graphs in the family have a triangle in common. How large can be? (We talked about it in this post.) … Continue reading

Posted in Combinatorics, Open problems | 10 Comments

## Polymath3: Polynomial Hirsch Conjecture 4

So where are we? I guess we are trying all sorts of things, and perhaps we should try even more things. I find it very difficult to choose the more promising ideas, directions and comments as Tim Gowers and Terry Tao did so … Continue reading

| Tagged , | 73 Comments