Category Archives: Open problems

The Polynomial Hirsch Conjecture: The Crux of the Matter.

 Consider t disjoint families of subsets of {1,2,…,n}, .   Suppose that (*) For every , and every and , there is  which contains .  The basic question is: How large can t  be???   Let’s call the answer f(n).   … Continue reading

Posted in Combinatorics, Convex polytopes, Open problems, Polymath3 | 5 Comments

Francisco Santos Disproves the Hirsch Conjecture

A title and an abstract for the conference “100 Years in Seattle: the mathematics of Klee and Grünbaum” drew a special attention: Title: “A counter-example to the Hirsch conjecture” Author: Francisco Santos, Universidad de Cantabria Abstract:  I have been in … Continue reading

Posted in Convex polytopes, Open problems, Polymath3 | 34 Comments

The Polynomial Hirsch Conjecture: Discussion Thread, Continued

Here is a  link for the just-posted paper Diameter of Polyhedra: The Limits of Abstraction by Freidrich Eisenbrand, Nicolai Hahnle,  Sasha Razborov, and Thomas Rothvoss. And here is a link to the paper  by Sandeep Koranne and Anand Kulkarni “The d-step Conjecture is Almost true”  – … Continue reading

Posted in Convex polytopes, Open discussion, Open problems | Tagged , | 16 Comments

(Eran Nevo) The g-Conjecture III: Algebraic Shifting

This is the third in a series of posts by Eran Nevo on the g-conjecture. Eran’s first post was devoted to the combinatorics of the g-conjecture and was followed by a further post by me on the origin of the g-conjecture. … Continue reading

Posted in Combinatorics, Convex polytopes, Guest blogger, Open problems | Tagged , | 2 Comments

The Polynomial Hirsch Conjecture: Discussion Thread

This post is devoted to the polymath-proposal about the polynomial Hirsch conjecture. My intention is to start here a discussion thread on the problem and related problems. (Perhaps identifying further interesting related problems and research directions.) Earlier posts are: The polynomial Hirsch … Continue reading

Posted in Convex polytopes, Open discussion, Open problems | Tagged , | 115 Comments

Polymath4 – Finding Primes Deterministically – is On Its Way

  After two long and interesting discussion threads polymath4, devoted to finding deterministically large prime numbers, is on its way on the polymath blog.

Posted in Open problems | Tagged | Leave a comment

The Polynomial Hirsch Conjecture – How to Improve the Upper Bounds.

I can see three main avenues toward making progress on the Polynomial Hirsch conjecture. One direction is trying to improve the upper bounds, for example,  by looking at the current proof and trying to see if it is wasteful and if so where … Continue reading

Posted in Convex polytopes, Open discussion, Open problems | Tagged , | 14 Comments

The Polynomial Hirsch Conjecture, a Proposal for Polymath3 (Cont.)

The Abstract Polynomial Hirsch Conjecture A convex polytope is the convex hull of a finite set of points in a real vector space. A polytope can be described as the intersection of a finite number of closed halfspaces. Polytopes have … Continue reading

Posted in Convex polytopes, Open discussion, Open problems | Tagged , | 5 Comments

The Polynomial Hirsch Conjecture: A proposal for Polymath3

This post is continued here.  Eddie Kim and Francisco Santos have just uploaded a survey article on the Hirsch Conjecture. The Hirsch conjecture: The graph of a d-polytope with n vertices  facets has diameter at most n-d. We devoted several … Continue reading

Posted in Convex polytopes, Open discussion, Open problems | Tagged , , , | 38 Comments

Raigorodskii’s Theorem: Follow Up on Subsets of the Sphere without a Pair of Orthogonal Vectors

Andrei Raigorodskii (This post follows an email by Aicke Hinrichs.) In a previous post we discussed the following problem: Problem: Let be a measurable subset of the -dimensional sphere . Suppose that does not contain two orthogonal vectors. How large … Continue reading

Posted in Convexity, Open problems | Tagged , | 1 Comment