# Category Archives: Probability

## Influence, Threshold, and Noise

My dear friend Itai Benjamini told me that he won’t be able to make it to my Tuesday talk on influence, threshold, and noise, and asked if I already have  the slides. So it occurred to me that perhaps … Continue reading

## Analysis of Boolean Functions week 5 and 6

Lecture 7 First passage percolation 1)  Models of percolation. We talked about percolation introduced by Broadbent and Hammersley in 1957. The basic model is a model of random subgraphs of a grid in n-dimensional space. (Other graphs were considered later as … Continue reading

## Analysis of Boolean Functions – Week 3

Lecture 4 In the third week we moved directly to the course’s “punchline” – the use of Fourier-Walsh expansion of Boolean functions and the use of Hypercontractivity. Before that we  started with  a very nice discrete isoperimetric question on a … Continue reading

## Analysis of Boolean functions – week 2

Post on week 1; home page of the course analysis of Boolean functions Lecture II: We discussed two important examples that were introduced by Ben-Or and Linial: Recursive majority and  tribes. Recursive majority (RM): is a Boolean function with variables … Continue reading

## Poznań: Random Structures and Algorithms 2013

Michal Karonski (left) who built Poland’s probabilistic combinatorics group at Poznań, and a sculpture honoring the Polish mathematicians who first broke the Enigma machine (right, with David Conlon, picture taken by Jacob Fox). I am visiting now Poznań for the 16th … Continue reading

## BosonSampling and (BKS) Noise Sensitivity

Following are some preliminary observations connecting BosonSampling, an interesting  computational task that quantum computers can perform (that we discussed in this post), and noise-sensitivity in the sense of Benjamini, Schramm, and myself (that we discussed here and here.) BosonSampling and computational-complexity hierarchy-collapse Suppose that … Continue reading

## Lawler-Kozdron-Richards-Stroock’s combined Proof for the Matrix-Tree theorem and Wilson’s Theorem

David Wilson and a cover of Shlomo’s recent book “Curvature in mathematics and physics” A few weeks ago, in David Kazhdan’s basic notion seminar, Shlomo Sternberg gave a lovely presentation Kirchho ff and Wilson via Kozdron and Stroock. The lecture is based on … Continue reading

## Oz’ Balls Problem: The Solution

A commentator named Oz proposed the following question: You have a box with n red balls and n blue balls. You take out each time a ball at random but, if the ball was red, you put it back in the box and take out … Continue reading

Posted in Probability, Test your intuition | | 1 Comment

## Taking balls away: Oz’ Version

This post is based on a comment by Oz to our question about balls with two colors: “There is an interesting (and more difficult) variation I once heard but can’t recall where: You have a box with n red balls … Continue reading

Posted in Guest post, Probability, Test your intuition | Tagged , , | 14 Comments