Levon Khachatrian’s Memorial Conference in Yerevan

lk

Workshop announcement

Levon 7

The National Academy of Sciences of Armenia together American University of Armenia are organizing a memorial workshop on extremal combinatorics, cryptography and coding theory dedicated to the 60th anniversary of the mathematician Levon Khachatrian.  Professor Khachatrian started his academic career at the Institute of Informatics and Automation of National Academy of Sciences. From 1991 until the end of his short life in 2002 he spent at University of Bielefeld, Germany where Khachatrian’s talent flourished working with Professor Rudolf Ahlswede. Professor Khachatrian’s most remarkable results include solutions of problems dating back over 40 years in extremal combinatorics posed by the world famous mathematician Paul Erdos.  These problems had attracted the attention of many top people in combinatorics and number theory who were unsuccessfully in their attempts to solve them. At the workshop in Yerevan we look forward to the participation of invited speakers (1 hour presentations), researchers familiar with Khachatrian’s work, as well as contributed papers in all areas of extremal combinatorics, cryptography and coding theory.

The American University of Armenia (www.aua.am) is proud to host the workshop.

Workshop chair:  Gurgen Khachatrian

For any inquiries please send E-mail to: gurgenkh@aua.am

Levon 5

Posted in Combinatorics, Conferences | Tagged | 1 Comment

Navier-Stokes Fluid Computers

how-magneto-rheological-suspension-works-8947_2

Smart fluid

Terry Tao posted a very intriguing post on the Navier-Stokes equation, based on a recently uploaded paper Finite time blowup for an averaged three-dimensional Navier-Stokes equation.

The paper proved a remarkable negative answer for the regularity conjecture for a certain variants of the NS equations, namely (or, perhaps, more precisely) the main theorem demonstrates finite time blowup for an averaged Navier-Stokes equation. (This already suffices to show that certain approaches for a positive answer to the real problem are not viable.) The introduction ends with the following words.

“This suggests an ambitious (but not obviously impossible) program (in both senses of
the word) to achieve the same e ffect for the true Navier-Stokes equations, thus obtaining a negative answer to Conjecture 1.1 (the regularity conjecture for 3D NS equation)… Somewhat analogously to how a quantum computer can be constructed from the laws of quantum mechanics [Here Tao links to Benio ff's 1982 paper: "Quantum mechanical Hamiltonian models of Turing machines,"], or a Turing machine can be constructed from cellular automata such as “Conway’s Game of Life” , one could hope to design logic gates entirely out of ideal fluid (perhaps by using suitably shaped vortex sheets to simulate the various types of physical materials one would use in a mechanical computer). If these gates were sufficiently “Turing complete”, and also “noise-tolerant”, one could then hope to combine enough of these gates together to “program” a von Neumann machine consisting of ideal fluid that, when it runs, behaves qualitatively like the blowup solution used to establish Theorem 1.4.[The paper's main theorem] Note that such replicators, as well as the related concept of a universal constructor, have been built within cellular automata such as the “Game of Life.”

Once enough logic gates of ideal fluid are constructed, it seems that the main difficulties in executing the above program are of a “software engineering” nature, and would be in principle achievable, even if the details could be extremely complicated in practice. The main mathematical difficulty in executing this “fluid computing” program would thus be to arrive at (and rigorously certify) a design for logical gates of inviscid fluid that has some good noise tolerance properties. In this regard, ideas from quantum computing (which faces a unitarity constraint somewhat analogous to the energy conservation constraint for ideal fluids, albeit with the key di fference of having a linear evolution rather than a nonlinear one) may prove to be useful. (Emphasis mine.)

Interesting idea!

And what Tao does go well beyond an idea, he essentially implement this program for a close relative of the NS equation!  I am not sure if universal computing is established for these systems but the proofs of the finite-time blow up theorem certainly uses some computational-looking gadget, and also as Terry explains some form of fault-tolerance.

Somewhat related ideas (unsupported by any results, of course,) appeared in the seventh post “Quantum repetition” of my debate with Aram Harrow on quantum computing.  (See, e.g., this remark, and this one, and this one.) The thread also contains interesting links, e.g. to Andy Yao’s paper “Classical physics and the Curch-Turing Thesis.”  In addition to the interesting question:

Does the NS-equation in three-dimension supports universal (classical) computation,

we can also ask what about two-dimensions?

Can NS-equations in two dimension be approximated in any scale by bounded depth circuits?

One general question suggested there was the following: “It can be of interest (and perhaps harder compared to the quantum case) to try to describe classical evolutions that do not enable/hide fault tolerance and (long) computation.”

Another interesting comment by Arie Israel is: “I was surprised to learn that experimental fluid mechanics people had thought of this analogy before. Apparently the key name is ‘Fluidics’ and those ideas date back at least to the sixties.”

cih2

Update: Here is the first paragraph from a nice article by  Erica Klarreich entitled A Fluid New Path in Grand Math Challenge on this development in Quanta Magazine:

In Dr. Seuss’s book “The Cat in the Hat Comes Back,” the Cat makes a stain he can’t clean up, so he calls upon the help of Little Cat A, a smaller, perfect replica of the Cat who has been hiding under the Cat’s hat. Little Cat A then calls forth Little Cat B, an even smaller replica hidden under Little Cat A’s hat. Each cat in turn lifts his hat to reveal a smaller cat who possesses all the energy and good cheer of the original Cat, just crammed into a tinier package. Finally, Little Cat Z, who is too small to see, unleashes a VOOM like a giant explosion of energy, and the stain disappears.

And here is a follow up post on Tao’s blog (and a few more II, III), and a post on Shtetl Optimized.

The flip side

Update (June 14): It is worth noting that while the purpose of Tao’s program is to show finite-time blow up of the 3D Navier Stokes equations (as is often the case) these lines of ideas can potentially be useful also toward a positive solution of the regularity conjectures. Specifically, one can try to show that 3D Navier-Stokes equations do not support universal classical computation and even more specifically do not support classical fault-tolerance and error correction. Also here some analogy with quantum computation can be useful: It is expected that for adiabatic processes computation requires “spectral gap” and that gapped evolutions with local Hamiltonians support only bounded depth computation. Something analogous may apply to NS equations in bounded dimensions.

There are many caveats, of course,  the quantum results are not proved for D>1, NS equations are non-linear which weakens the analogy, and showing that the evolution does not support computation does not imply, as far as we know, regularity.

Three more remarks: 1) On the technical level an important relevant technical tool for the results on gapped systems with local Hamiltonians is the Lieb-Robinson inequality. (See, e.g. this review paper.)  2) for classical evolutions a repetition mechanism (or the “majority function”) seems crucial for robust computation and it will be interesting specifically to test of 3D Navier-stokes support it; 3) If computation is not possible beyond bounded depth this fact may lead to additional conserved quantities for NS, beyond the classical ones. (One more, June 28): It looks to me that the crucial question is if NS equations only support bounded computation or not. So this distinction captures places where circuit complexity gives clear mathematical distinctions.

Posted in Analysis, Applied mathematics, Computer Science and Optimization, Open problems | Tagged , , , , , | 11 Comments

Pictures from Recent Quantum Months

akm2

A special slide I prepared for my lecture at Gdansk featuring Robert Alicki and I as climber on the mountain of quantum computers “because it is not there.”

It has been quite a while since I posted here about quantum computers. Quite a lot happened in the last months regarding this side of my work, and let me devote this post mainly to pictures. So here is a short summary going chronologically backward in time. Last week – Michel Dyakonov visited Jerusalem, and gave here the condensed matter physics seminar on the spin Hall effect. A couple of weeks before in early January we had the very successful Jerusalem physics winter school on Frontier in quantum information. (Here are the recorded lectures.) Last year I gave my evolving-over-time lecture on why quantum computers cannot work in various place and different formats in Beer-Sheva, Seattle, Berkeley, Davis (CA), Gdansk, Paris, Cambridge (US), New-York, and Jerusalem. (The post about the lecture at MIT have led to a long and very interesting discussion mainly with Peter Shor and Aram Harrow.) In August I visited Robert Alicki, the other active QC-skeptic, in Gdansk and last June I took part in organizing a (successful) quantum information conference Qstart in Jerusalem (Here are the recorded lectures.).

And now some pictures in random ordering

2013-08-01 10.09.28

With Robert Alicki in Gdynia near Gdansk

seattle

With (from left) Connie Sidles, Yuri Gurevich, John Sidles and Rico Picone in Seattle  (Victor Klee used to take me to the very same restaurant when I visited Seattle in the 90s and 00s.) Update: Here is a very interesting post on GLL entitled “seeing atoms” on John Sidles work.

photo

With Michel Dyakonov (Jerusalem, a few days ago)

Gil+Mihai

With Michal Horodecki in Sopot  near Gdansk (Michal was a main lecturer in our physics school a few weeks ago.)

aramgil2

Aram Harrow and me meeting a year ago at MIT.

2013-08-01 10.12.45

2013-08-01 10.12.52

Sometimes Robert and I look skeptically in the same direction and other times we look skeptically in opposite directions. These pictures are genuine! Our skeptical face impressions are not staged. The pictures were taken by Maria, Robert’s wife. Robert and I are working for many years (Robert since 2000 and I since 2005) in trying to examine skeptically the feasibility of quantum fault-tolerance. Various progress in experimental quantum error-correction and other experimental works give good reasons to believe that our views could be examined in the rather near future.

QS

A slide I prepared for a 5-minute talk at the QSTART rump session referring to the impossibility of quantum fault-tolerance as a mild earthquake with wide impact.

GTprod2This is a frame from the end-of-shooting of a videotaped lecture on “Why quantum computers cannot work” at the Simons Institute for the Theory of Computing at Berkeley. Producing a videotaped lecture is a very interesting experience! Tselil Schramm (in the picture holding spacial sets of constant width) helped me with this production.

Posted in Conferences, Quantum, Updates | Tagged , , , , , , , , , | 3 Comments

Joel David Hamkins’ 1000th MO Answer is Coming

joel

Update (May 2014): The second MO contributor to answer 1000 questions is another distinguished mathematician (and a firend) Igor Rivin.

Joel David Hamkins’ profile over MathOverflow reads: “My main research interest lies in mathematical logic, particularly set theory, focusing on the mathematics and philosophy of the infinite. A principal concern has been the interaction of forcing and large cardinals, two central concepts in set theory. I have worked in group theory and its interaction with set theory in the automorphism tower problem, and in computability theory, particularly the infinitary theory of infinite time Turing machines. Recently, I am preoccupied with the set-theoretic multiverse, engaging with the emerging field known as the philosophy of set theory.”

Joel is a wonderful MO contributor, one of those distinguished mathematicians whose arrays of MO answers in their areas of interest draw coherent deep pictures for these areas that you probably cannot find anywhere else. And Joel is also a very highly decorated and prolific MO contributor, whose 999th answer appeared today!!

Here is a very short selection of Joel’s answers. To (MO founder) Anton Geraschenko’s question What are some reasonable-sounding statements that are independent of ZFC? Joel answered; “If a set X is smaller in cardinality than another set Y, then X has fewer subsets than Y.” Joel gave a very thorough answer to  my question on Solutions to the Continuum Hypothesis; His 999th answer is on the question Can an ultraproduct be infinite countable? (the answer is yes! but this is a large cardinal assumption.) Update: Joel’s 1000th answer on a question about logic in mathematics and philosophy was just posted.

Joel also wrote a short assay, the use and value of MathOverflow over his blog. Here it is:

The principal draw of mathoverflow for me is the unending supply of extremely interesting mathematics, an eternal fountain of fascinating questions and answers. The mathematics here is simply compelling.

I feel that mathoverflow has enlarged me as a mathematician. I have learned a huge amount here in the past few years, particularly concerning how my subject relates to other parts of mathematics. I’ve read some really great answers that opened up new perspectives for me. But just as importantly, I’ve learned a lot when coming up with my own answers. It often happens that someone asks a question in another part of mathematics that I can see at bottom has to do with how something I know about relates to their area, and so in order to answer, I must learn enough about this other subject in order to see the connection through. How fulfilling it is when a question that is originally opaque to me, because I hadn’t known enough about this other topic, becomes clear enough for me to have an answer. Meanwhile, mathoverflow has also helped me to solidify my knowledge of my own research area, often through the exercise of writing up a clear summary account of a familiar mathematical issue or by thinking about issues arising in a question concerning confusing or difficult aspects of a familiar tool or method.

Mathoverflow has also taught me a lot about good mathematical exposition, both by the example of other’s high quality writing and by the immediate feedback we all get on our posts. This feedback reveals what kind of mathematical explanation is valued by the general mathematical community, in a direct way that one does not usually get so well when writing a paper or giving a conference talk. This kind of knowledge has helped me to improve my mathematical writing in general.

So, thanks very much mathoverflow! I am grateful.

Thanks very much, Joel,  for your wonderful mathoverflow answers and questions!

JDH

Posted in Mathematical logic and set theory, Mathematics over the Internet | Tagged , | 3 Comments

Amazing: Peter Keevash Constructed General Steiner Systems and Designs

KONICA MINOLTA DIGITAL CAMERA

Here is one of the central and oldest problems in combinatorics:

Problem: Can you find a collection S of q-subsets from an n-element set X set so that every r-subset of X is included in precisely λ sets in the collection?

A collection S  of this kind are called a design of parameters (n,q,r, λ),  a special interest is the case  λ=1, and in this case S is called a Steiner system.

For such an S to exist n should be admissible namely {{q-i} \choose {r-i}} should divide \lambda {{n-i} \choose {r-i}} for every 1 \le i \le r-1.

There are only few examples of designs when r>2. It was even boldly conjectured that for every q r and λ if n is sufficiently large than a design of parameters  (n,q,r, λ) exists but the known constructions came very very far from this.   … until last week. Last week, Peter Keevash gave a twenty minute talk at Oberwolfach where he announced the proof of the bold existence conjecture. Today his preprint the existence of designs, have become available on the arxive.

Brief history

The existence of designs and Steiner systems is one of the oldest and most important problems in combinatorics.

1837-1853 – The existence of designs and Steiner systems was asked by Plücker(1835), Kirkman (1846) and Steiner (1853).

1972-1975 – For r=2 which was of special interests, Rick Wilson proved their existence for large enough admissible values of n.

1985 -Rödl proved the existence of approximate objects (the property holds for (1-o(1)) r-subsets of X) , thus answering a conjecture by Erdös and Hanani.

1987  – Teirlink proved their existence for infinitely  many values of n when r and q are arbitrary and  λ is a certain large number depending on q and r but not on n. (His construction also does not have repeated blocks.)

2014 – Keevash’s  proved the existence of Steiner systems for all but finitely many admissible  values of n for every q and r. He uses a new method referred to as Randomised Algebraic Constructions.

Update: Just 2 weeks before Peter Keevash announced his result I mentioned the problem in my lecture in “Natifest” in a segment of the lecture devoted to the analysis of Nati’s dreams. 35:38-37:09.

Update: Some other blog post on this achievement: Van Vu Jordan Ellenberg, The aperiodical . A related post from Cameron’s blog Subsets and partitions.

Update: Danny Calegary pointed out a bird-eye similarity between Keevash’s strategy and the strategy of the  recent Kahn-Markovic proof of the Ehrenpreis conjecture http://arxiv.org/abs/1101.1330 , a strategy used again by Danny and Alden Walker to show that random groups contain fundamental groups of closed surfaces http://arxiv.org/abs/1304.2188 .

Posted in Combinatorics, Open problems | Tagged , , | 11 Comments

Many Short Updates

Things in Berkeley and later here in Jerusalem were very hectic so I did not blog much since mid October. Much have happened so let me give brief and scattered highlights review.

Two “real analysis” workshops at the Simons Institute – The first in early October was on Functional Inequalities in Discrete Spaces with Applications and the second in early December was on Neo-classical methods in discrete analysis. Many exciting lectures! The links lead to the videotaped  lectures. There were many other activities at the Simons Institute also in the parallel program on “big data” and also many interesting talks at the math department in Berkeley, the CS department and MSRI.

inequality

To celebrate the workshop on inequalities, there were special shows in local movie theaters

My course at Berkeley on analysis of Boolean functions - The course went very nicely. I stopped blogging about it at weak 7. Just before a lecture on MRRW upper bounds for binary codes, a general introductory lecture on social choice, and then several lectures by Guy Kindler (while I was visiting home) on the invariance principle and majority is stablest theorem.  The second half of the course covered sharp threshold theorems, applications for random graphs, noise sensitivity and stability, a little more on percolation and a discussion of some open problems.

nams

Back to snowy Jerusalem, Midrasha, Natifest, and Archimedes. I landed in Israel on Friday toward the end of the heaviest  snow storm in Jerusalem. So I spent the weekend with my 90-years old father in law before reaching Jerusalem by train. While everything at HU was closed there were still three during-snow mathematics activities at HU. There was a very successful winter school (midrasha) on analytic number theory which took place in the heaviest storm days.  Natifest was a very successful conference and I plan to devote to it a special post, but meanwhile, here is a link to the videotaped lectures and a picture of Nati with Michal, Anna and Shafi. We also had a special cozy afternoon event joint between the mathematics department and the department for classic studies  where Reviel Nets talked about the Archimedes Palimpses.

royal

The story behind Reviel’s name is quite amazing. When he was born, his older sister tried to read what was written in a pack of cigarettes. It should have been “royal” but she read “reviel” and Reviel’s parents adopted it for his name.

archimedes

Posted in Conferences, Updates | 4 Comments

Many triangulated three-spheres!

The news

Eran Nevo and Stedman Wilson have constructed \exp (K n^2) triangulations with n vertices of the 3-dimensional sphere! This settled an old problem which stood open for several decades. Here is a link to their paper How many n-vertex triangulations does the 3 -sphere have?

Quick remarks:

1) Since the number of facets in an n-vertex triangulation of a 3-sphere is at most quadratic in n, an upper bound for the number of triangulations of the 3-sphere with n vertices is \exp(n^2 \log n). For certain classes of triangulations, Dey removed in 1992  the logarithmic factor in the exponent for the upper bound.

2) Goodman and Pollack showed in 1986 that the number of simplicial 4-polytopes with n vertices is much much smaller \exp (O(n\log n)). This upper bound applies to simplicial polytopes of every dimension d, and Alon extended it to general polytopes.

3) Before the new paper the world record was the 2004 lower bound by Pfeifle and Ziegler - \exp (Kn^{5/4}).

4) In 1988 I constructed \exp (K n^{[d/2]}) triangulations of the d-spheres with n vertices.  The new construction gives hope to improve it in any odd dimension by replacing [d/2] by [(d+1)/2] (which match up to logn the exponent in the upper bound). [Update (Dec 19) : this has now been achieved by Paco Santos (based on a different construction) and Nevo and Wilson (based on extensions of their 3-D constructions). More detailed to come.]

Posted in Combinatorics, Convex polytopes, Geometry, Open problems | Tagged , | Leave a comment

NatiFest is Coming

Nati Poster_Final

The conference Poster as designed by Rotem Linial

A conference celebrating Nati Linial’s 60th birthday will take place in Jerusalem December 16-18. Here is the conference’s web-page. To celebrate the event, I will reblog my very early 2008 post “Nati’s influence” which was also the title of my lecture in the workshop celebrating Nati’s 50th birthday.

Nati’s Influence

When do we say that one event causes another? Causality is a topic of great interest in statistics, physics, philosophy, law, economics, and many other places. Now, if causality is not complicated enough, we can ask what is the influence one event has on another one.  Michael Ben-Or and Nati Linial wrote a paper in 1985 where they studied the notion of influence in the context of collective coin flipping. The title of the post refers also to Nati’s influence on my work since he got me and Jeff Kahn interested in a conjecture from this paper.

Influence

The word “influence” (dating back, according to Merriam-Webster dictionary, to the 14th century) is close to the word “fluid”.  The original definition of influence is: “an ethereal fluid held to flow from the stars and to affect the actions of humans.” The modern meaning (according to Wictionary) is: “The power to affect, control or manipulate something or someone.”

Ben-Or and Linial’s definition of influence

Collective coin flipping refers to a situation where n processors or agents wish to agree on a common random bit. Ben-Or and Linial considered very general protocols to reach a single random bit, and also studied the simple case where the collective random bit is described by a Boolean function f(x_1,x_2,\dots,x_n) of n bits, one contributed by every agent. If all agents act appropriately the collective bit will be ’1′ with probability 1/2. The purpose of collective coin flipping is to create a random bit R which is immune as much as possible against attempts of one or more agents to bias it towards ’1′ or ’0′. Continue reading

Posted in Combinatorics, Computer Science and Optimization, Conferences, Updates | Tagged | 2 Comments

More around Borsuk

Piotr Achinger told me two things abour Karol Borsuk:

 

From Wikipedea: Dunce hat Folding. The blue hole is only for better view

Borsuk trumpet

is  another name for the contractible non-collapsible space commonly called also the “dunce hat“. (See also this post.) For a birthday conference of Borsuk, a cake of this shape was baked and served.

 Hodowla zwierzątek

(polish, in English: Animal Husbandry) is (from Wikipedea, here is the link) a dice game invented and published by Karol Borsuk at his own expense in 1943, during the German occupation of Warsaw. Sales of the game were a way for Borsuk to support his family after he lost his job following the closure by the German occupation authorities of Warsaw University. The original sets were produced by hand by Borsuk’s wife, Zofia. The author of the drawings of animals was Janina Borsuk née Śliwicka. The game was one of the first in the world to feature a 12-sided dice.

Posted in Updates | Tagged | 4 Comments

Analysis of Boolean Functions – Week 7

Lecture 11

The Cap Set problem

We presented Meshulam’s  bound 3^n/n for the maximum number of elements in a subset A of (\mathbb{Z}/3Z)^n not containing a triple x,y,x of distinct elements whose sum is 0.

The theorem is analogous to Roth’s theorem for 3-term arithmetic progressions and, in fact, it is a sort of purified analog to Roth’s proof, as some difficulties over the integers are not presented here.  There are two ingredients in the proof: One can be referred to as the “Hardy-Littlewood circle method” and the other is the “density increasing” argument.

We first talked about density-increasing method and showed how KKL’s theorem for influence of sets follows from KKL’s theorem for the maximum individual influence. I mentioned what is known about influence of large sets and what is still open. (I will devote to this topic a separate post.)

Then we went over Meshulam’s proof in full details. A good place to see a detailed sketch of the proof is in this post  on Gowers’ blog.

Let me copy Tim’s sketch over here:

Sketch of proof (from Gowers’s blog).

Next, here is a brief sketch of the Roth/Meshulam argument. I am giving it not so much for the benefit of people who have never seen it before, but because I shall need to refer to it. Recall that the Fourier transform of a function f:\mathbb{F}_3^n\to\mathbb{C} is defined by the formula

\hat{f}(r)=\mathbb{E}f(x)\omega^{r.x},

where \mathbb{E} is short for 3^{-n}\sum, \omega stands for \exp(2\pi i/3) and r.x is short for \sum_ir_ix_i. Now

\mathbb{E}_{x+y+z=0}f(x)f(y)f(z)=f*f*f(0).

(Here \mathbb{E} stands for 3^{-2n}\sum, since there are 3^{2n} solutions of x+y+z=0.) By the convolution identity and the inversion formula, this is equal to \sum_r\hat{f}(r)^3.

Now let f be the characteristic function of a subset A\subset\mathbb{F}_3^n of density \delta. Then \hat{f}(0)=\delta. Therefore, if A contains no solutions of x+y+z=0 (apart from degenerate ones — I’ll ignore that slight qualification for the purposes of this sketch as it makes the argument slightly less neat without affecting its substance) we may deduce that

\sum_{r\ne 0}|\hat{f}(r)|^3\geq\delta^3.

Now Parseval’s identity tells us that

\sum_r|\hat{f}(r)|^2=\mathbb{E}_x|f(x)|^2=\delta,

from which it follows that \max_{r\ne 0}|\hat{f}(r)|\geq\delta^2.

Recall that \hat{f}(r)=\mathbb{E}_xf(x)\omega^{r.x}. The function x\mapsto\omega^{r.x} is constant on each of the three hyperplanes r.x=b (here I interpret r.x as an element of \mathbb{F}_3). From this it is easy to show that there is a hyperplane H such that \mathbb{E}_{x\in H}f(x)\geq\delta+c\delta^2 for some absolute constant c. (If you can’t be bothered to do the calculation, the basic point to take away is that if \hat{f}(r)\geq\alpha then there is a hyperplane perpendicular to r on which A has density at least \delta+c\alpha, where c is an absolute constant. The converse holds too, though you recover the original bound for the Fourier coefficient only up to an absolute constant, so non-trivial Fourier coefficients and density increases on hyperplanes are essentially the same thing in this context.)

Thus, if A contains no arithmetic progression of length 3, there is a hyperplane inside which the density of A is at least \delta+c\delta^2. If we iterate this argument 1/c\delta times, then we can double the (relative) density of A. If we iterate it another 1/2c\delta times, we can double it again, and so on. The number of iterations is at most 2/c\delta, so by that time there must be an arithmetic progression of length 3. This tells us that we need lose only 2/c\delta dimensions, so for the argument to work we need n\geq 2/c\delta, or equivalently \delta\geq C/n.

 

Lecture 12

Error-Correcting Codes

We discussed error-correcting codes. A binary code C is simply a subset of the discrete n-dimensional cube. This is a familiar object but in coding theory we asked different questions about it. A code is linear if it forms a vector space over (Z/2Z)^n. The minimal distance of a code is the minimum Hamming distance between two distinct elements, and in the case of linear codes it is simply the minimum weight of a non-zero element of the codes. We mentioned codes over larger alphabets, spherical codes and even codes in more general metric spaces. Error-correcting codes are among the most glorious applications of mathematics and their theory is related to many topics in pure mathematics and theoretical computer science.

1) An extremal problem for codes: What is the maximum size of a binary code of length n with minimal distance d. We mentioned the volume (or Hamming) upper bound and the Gilbert-Varshamov lower bound. We concentrated on the case of codes of positive rate.

2) Examples of codes: We mentioned the Hamming code and the Hadamard code and considered some of their basic properties. Then we mentioned the long code which is very important in the study of Hardness of computation.

3) Linearity testing. Linearity testing is closely related to the Hadamard code. We described Blum-Luby-Rubinfeld linearity test and analyzed it. This is very similar to the Fourier theoretic formula and argument we saw last time for the cap problem.

We start to describe Delsartes linear Programming method to be continued next week.

Posted in Combinatorics, Computer Science and Optimization, Teaching | Tagged , , | Leave a comment