Tag Archives: Richard Stanley

Happy Birthday Richard Stanley!

This week we are celebrating in Cambridge MA , and elsewhere in the world, Richard Stanley’s birthday.  For the last forty years, Richard has been one of the very few leading mathematicians in the area of combinatorics, and he found deep, profound, and … Continue reading

Posted in Combinatorics, Conferences, Happy birthday | Tagged | 3 Comments

Richard Stanley: How the Proof of the Upper Bound Theorem (for spheres) was Found

The upper bound theorem asserts that among all d-dimensional polytopes with n vertices, the cyclic polytope maximizes the number of facets (and k-faces for every k). It was proved by McMullen for polytopes in 1970, and by Stanley for general triangulations … Continue reading

Posted in Combinatorics, Convex polytopes | Tagged , | 2 Comments

(Eran Nevo) The g-Conjecture II: The Commutative Algebra Connection

Richard Stanley This post is authored by Eran Nevo. (It is the second in a series of five posts.) The g-conjecture: the commutative algebra connection Let be a triangulation of a -dimensional sphere. Stanley’s idea was to associate with a ring … Continue reading

Posted in Combinatorics, Convex polytopes, Open problems | Tagged , , , , | 4 Comments