Recent Comments

Recent Posts
 Laci Babai Visits Israel!
 Polymath10 conclusion
 Is HeadsUp Poker in P?
 The Median Game
 International mathematics graduate studies at the Hebrew University of Jerusalem
 Polynomial Method Workshop
 Amazing: Stefan Glock, Daniela Kühn, Allan Lo, and Deryk Osthus give a new proof for Keevash’s Theorem. And more news on designs.
 The US Elections and Nate Silver: Informtion Aggregation, Noise Sensitivity, HEX, and Quantum Elections.
 Avifest live streaming
Top Posts & Pages
 Laci Babai Visits Israel!
 Polymath10 conclusion
 The Median Game
 About Conjectures: Shmuel Weinberger
 A Breakthrough by Maryna Viazovska Leading to the Long Awaited Solutions for the Densest Packing Problem in Dimensions 8 and 24
 Polymath 10 Emergency Post 5: The ErdosSzemeredi Sunflower Conjecture is Now Proven.
 Sarkaria's Proof of Tverberg's Theorem 1
 Greatest Hits
 'Gina Says'
RSS
Monthly Archives: September 2008
Extremal Combinatorics III: Some Basic Theorems
. Shattering Let us return to extremal problems for families of sets and describe several basic theorems and basic open problems. In the next part we will discuss a nice proof technique called “shifting” or “compression.” The SauerShelah (Perles VapnikChervonenkis) Lemma: (Here we write .) … Continue reading
New Haven (mainly pictures)
] Yale, New Haven I am back in New Haven which have become my home away from home in the last five years. Cappuccino’S and more – Cedar cross Congress, New Haven. Not only that this name is similar … Continue reading
Posted in Uncategorized
Tagged New Haven, Three dimensional electron microscopy, Yale, Yoel Shkolinsky
Leave a comment
Annotating Kimmo Eriksson’s Poem
“Start counting her NUMBER OF FACES,” Kimmo Eriksson, Brush up your Björner (2008). The time is right to annotate Kimmo Eriksson’s memorable poem: 1. What are Chip firing games? Many women will find it admirable if you tell her she … Continue reading
A Diameter Problem (5)
6. First subexponential bounds. Proposition 1: How to prove it: This is easy to prove: Given two sets and in our family , we first find a path of the form where, and . We let with and consider the family … Continue reading
Diameter Problem (4)
Let us consider another strategy to deal with our diameter problem. Let us try to associate other graphs to our family of sets. Recall that we consider a family of subsets of size of the set . Let us now associate … Continue reading
Diameter Problem (3)
3. What we will do in this post and and in future posts We will now try all sorts of ideas to give good upper bounds for the abstract diameter problem that we described. As we explained, such bounds apply … Continue reading
Posted in Combinatorics, Convex polytopes, Open problems
Tagged Hirsch conjecture, Linear programming, Quasiautomated proofs
1 Comment
Oded
I just heard the terrible news that Oded Schramm was killed in a hiking accident. Oded was hiking on Guye Peak near Snoqualmie Pass near Seattle. This is a terrible loss to Oded’s family, and our hearts and thoughts are … Continue reading
The Prisoner’s Dilemma, Sympathy, and Yaari’s Challenge
Correlation and Cooperation In our spring school devoted to Arrow’s economics, Menahem Yaari gave a talk entitled “correlation and cooperation.” It was about games as a model of people’s behavior, and Yaari made the following points: It is an empirical fact … Continue reading
Posted in Economics, Games, Philosophy, Rationality
Tagged Cooperation, Correlation, Prisoner dilemma
2 Comments