### Recent Comments

Gil Kalai on זה הזמן לשינוי Yiftach on זה הזמן לשינוי Gil Kalai on זה הזמן לשינוי Yiftach on זה הזמן לשינוי Gil Kalai on זה הזמן לשינוי קוסמופוליט on זה הזמן לשינוי Gil Kalai on זה הזמן לשינוי Eli_B on זה הזמן לשינוי Michael Elkin on זה הזמן לשינוי Gil Kalai on זה הזמן לשינוי Eli_B on זה הזמן לשינוי Gil Kalai on זה הזמן לשינוי -
### Recent Posts

- זה הזמן לשינוי
- Combinatorics and More – Greatest Hits
- Ilan and me
- The Simplex, the Cyclic polytope, the Positroidron, the Amplituhedron, and Beyond
- From Oberwolfach: The Topological Tverberg Conjecture is False
- Midrasha Mathematicae #18: In And Around Combinatorics
- Quantum computing: achievable reality or unrealistic dream
- A Historical Picture Taken by Nimrod Megiddo
- Scott Triumphs* at the Shtetl

### Top Posts & Pages

- זה הזמן לשינוי
- Believing that the Earth is Round When it Matters
- The Simplex, the Cyclic polytope, the Positroidron, the Amplituhedron, and Beyond
- Quantum computing: achievable reality or unrealistic dream
- The Kadison-Singer Conjecture has beed Proved by Adam Marcus, Dan Spielman, and Nikhil Srivastava
- Combinatorics and More - Greatest Hits
- Answer: Lord Kelvin, The Age of the Earth, and the Age of the Sun
- Extremal Combinatorics I: Extremal Problems on Set Systems
- When It Rains It Pours

### RSS

# Monthly Archives: May 2009

## Some Philosophy of Science

The Bayesian approach to the philosophy of science was developed in the first half of the twentieth century. Karl Popper and Thomas Kuhn are twentieth-century philosophers of science who later proposed alternative approaches. It will be convenient to start with … Continue reading

Posted in Philosophy, Probability
14 Comments

## A Workshop for Advanced Undergraduate Students, Sept 6-17 2009

סדנא לתלמידי בוגר מצטיינים במתמטיקה מכון איינשטיין למתמטיקה, האוניברסיטה העברית בירושלים יום א’ י”ז אלול – יום ה’ כ”ח אלול תשס”ט 6-17/9/09 המכון למתמטיקה של האוניברסיטה העברית מזמין תלמידי מתמטיקה מצטיינים המסיימים שנה ב’ או ג’ של … Continue reading

Posted in Uncategorized
1 Comment

## Answer to Test Your Intuition (3)

Question: Let be the -dimensional cube. Turn into a torus by identifying opposite facets. What is the minumum -dimensional volume of a subset of which intersects every non-trivial cycle in . Answer: Taking to be all points in the solid … Continue reading

## How Large can a Spherical Set Without Two Orthogonal Vectors Be?

The problem Witsenhausen’s Problem (1974): Let be a measurable subset of the -dimensional sphere . Suppose that does not contain two orthogonal vectors. How large can the -dimensional volume of be? A Conjecture Conjecture: The maximum volume is attained … Continue reading

Posted in Open problems
4 Comments

## Extremal Combinatorics VI: The Frankl-Wilson Theorem

Rick Wilson The Frankl-Wilson theorem is a remarkable theorem with many amazing applications. It has several proofs, all based on linear algebra methods (also referred to as dimension arguments). The original proof is based on a careful study of incidence … Continue reading

## Recent and Future Excitements

It is very hectic around here and on top of the eight or so regular research seminars at math (and quite a few more at CS) we have many visitors as school terms at the US are over. A week … Continue reading

Posted in Updates
Leave a comment

## The Cap-Set Problem and Frankl-Rodl Theorem (C)

Update: This is a third of three posts (part I, part II) proposing some extensions of the cap set problem and some connections with the Frankl Rodl theorem. Here is a post presenting the problem on Terry Tao’s blog (March 2007). Here … Continue reading

Posted in Combinatorics, Open problems
Tagged Cap sets, Frankl-Rodl theorem, polymath1
Leave a comment

## Ehud Friedgut: Murphy’s Law of Breastfeeding Twins

This post is authored by Ehud Friedgut. Congratulations to Keren, Ehud and Michal for the birth of Shiri and Hillel! Murphy’s law of breastfeeding twins, like all of Murphy’s laws, is supported by strong empirical evidence. The twins’ feeding rhythm … Continue reading

Posted in Guest blogger
9 Comments

## The Amitsur-Levitzki Theorem for a Non Mathematician.

Yaacov Levitzki The purpose of this post is to describe the Amitsur-Levitzki theorem: It is meant for people who are not necessarily mathematicians. Yet they need to know two things. The first is what matrices are. Very briefly, matrices are rectangular arrays … Continue reading

Posted in Algebra and Number Theory
Tagged Alex Levitzki. Yaacov Levitzki, Shimshon Amitsur
7 Comments