Recent Comments

Recent Posts
 Alexander A. Gaifullin: Many 27vertex Triangulations of Manifolds Like the Octonionic Projective Plane (Not Even One Was Known Before).
 Answer to Test Your Intuition 50: Detecting a Deviator
 To cheer you up in difficult times 36: The Immense Joy of Fake Reverse Parking
 Ordinary computers can beat Google’s quantum computer after all
 Test Your Intuition 50. TwoPlayer Random Walk; Can You Detect Who Did Not Follow the Rules?
 ICM 2022. Kevin Buzzard: The Rise of Formalism in Mathematics
 ICM 2022: Langlands Day
 ICM 2022 awarding ceremonies (1)
 ICM 2022 Virtual Program, Live events, and Dynamics Week in Jerusalem
Top Posts & Pages
 How Large can a Spherical Set Without Two Orthogonal Vectors Be?
 ICM 2022: Langlands Day
 Amazing: Hao Huang Proved the Sensitivity Conjecture!
 ICM 2022. Kevin Buzzard: The Rise of Formalism in Mathematics
 Answer to Test Your Intuition 50: Detecting a Deviator
 Amazing: Karim Adiprasito proved the gconjecture for spheres!
 Peter Keevash: More and Easier Designs!
 Raigorodskii's Theorem: Follow Up on Subsets of the Sphere without a Pair of Orthogonal Vectors
 Alexander A. Gaifullin: Many 27vertex Triangulations of Manifolds Like the Octonionic Projective Plane (Not Even One Was Known Before).
RSS
Monthly Archives: May 2009
Some Philosophy of Science
The Bayesian approach to the philosophy of science was developed in the first half of the twentieth century. Karl Popper and Thomas Kuhn are twentiethcentury philosophers of science who later proposed alternative approaches. It will be convenient to start with … Continue reading
Posted in Philosophy, Probability
14 Comments
A Workshop for Advanced Undergraduate Students, Sept 617 2009
סדנא לתלמידי בוגר מצטיינים במתמטיקה מכון איינשטיין למתמטיקה, האוניברסיטה העברית בירושלים יום א’ י”ז אלול – יום ה’ כ”ח אלול תשס”ט 617/9/09 המכון למתמטיקה של האוניברסיטה העברית מזמין תלמידי מתמטיקה מצטיינים המסיימים שנה ב’ או ג’ של לימודיהם במוסדות להשכלה … Continue reading
Answer to Test Your Intuition (3)
Question: Let be the dimensional cube. Turn into a torus by identifying opposite facets. What is the minumum dimensional volume of a subset of which intersects every nontrivial cycle in . Answer: Taking to be all points in the solid … Continue reading
How Large can a Spherical Set Without Two Orthogonal Vectors Be?
The problem Witsenhausen’s Problem (1974): Let be a measurable subset of the dimensional sphere . Suppose that does not contain two orthogonal vectors. How large can the dimensional volume of be? A Conjecture Conjecture: The maximum volume is attained … Continue reading
Posted in Open problems
4 Comments
Extremal Combinatorics VI: The FranklWilson Theorem
Rick Wilson The FranklWilson theorem is a remarkable theorem with many amazing applications. It has several proofs, all based on linear algebra methods (also referred to as dimension arguments). The original proof is based on a careful study of incidence … Continue reading
Recent and Future Excitements
It is very hectic around here and on top of the eight or so regular research seminars at math (and quite a few more at CS) we have many visitors as school terms at the US are over. A week … Continue reading
Posted in Updates
Leave a comment
The CapSet Problem and FranklRodl Theorem (C)
Update: This is a third of three posts (part I, part II) proposing some extensions of the cap set problem and some connections with the Frankl Rodl theorem. Here is a post presenting the problem on Terry Tao’s blog (March 2007). Here … Continue reading
Ehud Friedgut: Murphy’s Law of Breastfeeding Twins
This post is authored by Ehud Friedgut. Congratulations to Keren, Ehud and Michal for the birth of Shiri and Hillel! Murphy’s law of breastfeeding twins, like all of Murphy’s laws, is supported by strong empirical evidence. The twins’ feeding rhythm … Continue reading
The AmitsurLevitzki Theorem for a Non Mathematician.
Yaacov Levitzki The purpose of this post is to describe the AmitsurLevitzki theorem: It is meant for people who are not necessarily mathematicians. Yet they need to know two things. The first is what matrices are. Very briefly, matrices are rectangular arrays … Continue reading