Recent Comments

Recent Posts
 Friendship and Sesame, Maryam and Marina, Israel and Iran
 Elchanan Mossel’s Amazing Dice Paradox (your answers to TYI 30)
 TYI 30: Expected number of Dice throws
 Test your intuition 29: Diameter of various random trees
 Micha Perles’ Geometric Proof of the ErdosSos Conjecture for Caterpillars
 Touching Simplices and Polytopes: Perles’ argument
 Where were we?
 Call for nominations for the Ostrowski Prize 2017
 Problems for Imre Bárány’s Birthday!
Top Posts & Pages
 Elchanan Mossel's Amazing Dice Paradox (your answers to TYI 30)
 Friendship and Sesame, Maryam and Marina, Israel and Iran
 TYI 30: Expected number of Dice throws
 Answer: Lord Kelvin, The Age of the Earth, and the Age of the Sun
 A Breakthrough by Maryna Viazovska Leading to the Long Awaited Solutions for the Densest Packing Problem in Dimensions 8 and 24
 Test your intuition 29: Diameter of various random trees
 The Race to Quantum Technologies and Quantum Computers (Useful Links)
 Touching Simplices and Polytopes: Perles' argument
 Media Item from "Haaretz" Today: "For the first time ever..."
RSS
Monthly Archives: July 2009
The Polynomial Hirsch Conjecture – How to Improve the Upper Bounds.
I can see three main avenues toward making progress on the Polynomial Hirsch conjecture. One direction is trying to improve the upper bounds, for example, by looking at the current proof and trying to see if it is wasteful and if so where … Continue reading
Posted in Convex polytopes, Open discussion, Open problems
Tagged Discussion, Hirsch conjecture
14 Comments
The Polynomial Hirsch Conjecture, a Proposal for Polymath3 (Cont.)
The Abstract Polynomial Hirsch Conjecture A convex polytope is the convex hull of a finite set of points in a real vector space. A polytope can be described as the intersection of a finite number of closed halfspaces. Polytopes have … Continue reading
Posted in Convex polytopes, Open discussion, Open problems
Tagged Hirsch conjecture, Polymath proposals
5 Comments
How to Debate Beauty
Who is the most beautiful queen of cards? Opinions vary. From Gina Says part 2 How to debate Beauty [cosmic variance. Gina Says: May 10th, 2007 at 6:18 am ] The issue of beauty and physics is quite prominent … Continue reading
Posted in Gina Says
13 Comments
Gina Says Part two
Download the second part of my book “Gina Says.” Link to the post with the first part. “Gina Says,” Adventures in the Blogosphere String War selected and edited by Gil Kalai Praise for “Gina Says” After having … Continue reading
Posted in Blogging, Controversies and debates, Gina Says
15 Comments
A Proof by Induction with a Difficulty
The time has come to prove that the number of edges in every finite tree is one less than the number of vertices (a tree is a connected graph with no cycle). The proof is by induction, but first you need … Continue reading
What can the Second Prize Possibly be?
You are guaranteed to win one of the following five prizes, the letter says. (And it is completely free! Just 6 dollars shipping and handling.) a) a highdefinition hugescreen TV, b) a video camera, c) a yacht, d) a decorative … Continue reading
The Polynomial Hirsch Conjecture: A proposal for Polymath3
This post is continued here. Eddie Kim and Francisco Santos have just uploaded a survey article on the Hirsch Conjecture. The Hirsch conjecture: The graph of a dpolytope with n vertices facets has diameter at most nd. We devoted several … Continue reading
Alarming Developments In Tel Aviv University
Update (July 24): A detailed new article in Hebrew and English. Dr. Leora Meridor, who replaced Dov Lautman in March (just four months ago) as chair of TAU’s executive council is quoted saying: ” I’d give him (Zvi Galil) a list … Continue reading
Vitali Fest
Last week I took part in a lovely and impressive conference on the state of geometry and functional analysis, celebrating Vitali Milman’s 70th birthday. The conference started in Tel Aviv, continued at the Dead Sea, and returned to Tel Aviv. I gave a … Continue reading
Posted in Conferences
5 Comments
Test Your Intuition (7)
Consider the following game: you have a box that contains one white ball and one black ball. You choose a ball at random and then return it to the box. If you chose a white ball then a white ball is added to … Continue reading