*This is the third in a series of posts by Eran Nevo on the g-conjecture. Eran’s first post was devoted to the combinatorics of the g-conjecture and was followed by a further post by me on the origin of the g-conjecture. Eran’s second post was about the commutative-algebra content of the conjecture. It described the Cohen-Macaulay property (which is largely understood and known to hold for simplicial spheres) and the Lefshetz property which is known for simplicial polytopes and is wide open for simplicial spheres. *

*The g-conjecture and algebraic shifting*

### Squeezed spheres

Back to the question from last time, Steinitz showed that

**any simplicial 2-sphere is the boundary of a convex 3-polytope.**

However, in higher dimension

**there are many more simplicial spheres than simplicial polytopes,**

on a fixed large number of vertices. We will need Kalai’s squeezed spheres (of dimension ) which demonstrate this.

It is not known whether the hard Lefschetz property holds for all simplicial spheres. Recently Satoshi Murai showed that that the hard Lefschetz property holds for squeezed spheres. This gives a refinement of Billera-Lee part of the -theorem in terms of generic initial ideals. We will phrase it more combinatorially, via algebraic shifting.

### Symmetric algebraic shifting

Symmetric algebraic shifting is an operator on simplicial complexes, , defined by Kalai. carries the same information as the generic initial ideal of .

has the same -vector as , and it is *shifted* (see our earlier post on shifting). What properties of can be read off ? Well, the hard Lefschetz property can be read!

Let be the maximal simplicial complex on the vertex set with all maximal faces of the same dimension (such complex is called *pure* such that it doesn’t contain any of the sets , where

,

For example, and so the maximal faces in are the ones of the form or or . In particular, is shifted, and actually it equals , the symmetric shifting of the boundary of a cyclic polytope.

Now, our simplicial -sphere on vertices has the hard Lefschetz property iff

.

Murai showed the following: suppose that a simplicial complex is pure -dimensional on vertices, with symmetric and . Then there exists a (squeezed) sphere such that . is the squeezed sphere which Kalai constructed from the half-dimensional skeleton of . Given an -vector , the Billera-Lee polytope corresponds to this construction, where the half-dimensional skeleton of is the compressed complex (w.r.t. the rev-lex order) with -vector equals .

### Van Kampen-Flores complexes

Kalai and Sarkaria (independently) conjectured that if a simplicial complex on vertices can be embedded in the -sphere, then

.

In particular, for a triangulation of the -sphere, the -conjecture would follow.

Note that . iff the -skeleton of the -simplex, , a.k.a the van Kampen-Flores complex, is contained in , because is shifted. It is known that does not embed in , and we would like to conclude that if then does not embed in . Building on a result of Ed Swartz, if we could prove it, then it would follow that the -vector of any piecewise linear sphere is an -vector!

Say that a simplicial complex is a *minor* of a simplicial complex if you can obtain from by successive deletions and (admissible) contractions. Here *deletion *means taking a subcomplex, and *contraction* means identifying two vertices $u,v$ which satisfy the *link condition*, i.e. . If are one dimensional, this does recover the usual definition of minors for graphs.

We can show that if is a minor of then does not embed in . Is it true that implies that is a minor of ? The answer is Yes for , and we don’t know the situation for . If it is true, then the -conjecture for PL-spheres would follow.

We just mentioned PL-spheres. Can we solve the -conjecture for special families of spheres? And what about other manifolds?? Next time…

mlkMuV Excellent article, I will take note. Many thanks for the story!

Pingback: Satoshi Murai and Eran Nevo proved the Generalized Lower Bound Conjecture. | Combinatorics and more

Pingback: Convex Polytopes: Seperation, Expansion, Chordality, and Approximations of Smooth Bodies | Combinatorics and more