Recent Comments
-
Recent Posts
- Peter Cameron: Doing research
- To cheer you up in difficult times 18: Beautiful drawings by Neta Kalai for my book: “Gina Says”
- Amazing: Simpler and more general proofs for the g-theorem by Stavros Argyrios Papadakis and Vasiliki Petrotou, and by Karim Adiprasito, Stavros Argyrios Papadakis, and Vasiliki Petrotou.
- Igor Pak: What if they are all wrong?
- To cheer you up in difficult times 17: Amazing! The Erdős-Faber-Lovász conjecture (for large n) was proved by Dong Yeap Kang, Tom Kelly, Daniela Kühn, Abhishek Methuku, and Deryk Osthus!
- Open problem session of HUJI-COMBSEM: Problem #5, Gil Kalai – the 3ᵈ problem
- To cheer you up in difficult times 16: Optimism, two quotes
- The Argument Against Quantum Computers – A Very Short Introduction
- Open problem session of HUJI-COMBSEM: Problem #4, Eitan Bachmat: Weighted Statistics for Permutations
Top Posts & Pages
- Peter Cameron: Doing research
- TYI 30: Expected number of Dice throws
- Amazing: Simpler and more general proofs for the g-theorem by Stavros Argyrios Papadakis and Vasiliki Petrotou, and by Karim Adiprasito, Stavros Argyrios Papadakis, and Vasiliki Petrotou.
- Igor Pak: What if they are all wrong?
- Chomskian Linguistics
- The Argument Against Quantum Computers - A Very Short Introduction
- Answer: Lord Kelvin, The Age of the Earth, and the Age of the Sun
- To cheer you up in difficult times 18: Beautiful drawings by Neta Kalai for my book: "Gina Says"
- Dan Romik on the Riemann zeta function
RSS
Monthly Archives: August 2011
Alantha Newman and Alexandar Nikolov Disprove Beck’s 3-Permutations Conjecture
Alantha Newman and Alexandar Nikolov disproved a few months ago one of the most famous and frustrating open problem in discrepancy theory: Beck’s 3-permutations conjecture. Their paper A counterexample to Beck’s conjecture on the discrepancy of three permutations is already on … Continue reading
Discrepancy, The Beck-Fiala Theorem, and the Answer to “Test Your Intuition (14)”
The Question Suppose that you want to send a message so that it will reach all vertices of the discrete -dimensional cube. At each time unit (or round) you can send the message to one vertex. When a vertex gets the … Continue reading
Test Your Intuition (14): A Discrete Transmission Problem
Recall that the -dimensional discrete cube is the set of all binary vectors ( vectors) of length n. We say that two binary vectors are adjacent if they differ in precisely one coordinate. (In other words, their Hamming distance is 1.) This … Continue reading