Alexander Chervov asked over Mathoverflow about Noteworthy results in and around 2010 and some interesting results were offered in the answers. If you would like to mention additional results you can comment on them here. The only requirement is to explain what the result says and give links if possible.

### Recent Comments

Gil Kalai on זה הזמן לשינוי קוסמופוליט on זה הזמן לשינוי Gil Kalai on זה הזמן לשינוי Eli_B on זה הזמן לשינוי Michael Elkin on זה הזמן לשינוי Gil Kalai on זה הזמן לשינוי Eli_B on זה הזמן לשינוי Gil Kalai on זה הזמן לשינוי Gil Kalai on זה הזמן לשינוי Eli_B on זה הזמן לשינוי Gil Kalai on זה הזמן לשינוי Michael Elkin on זה הזמן לשינוי -
### Recent Posts

- זה הזמן לשינוי
- Combinatorics and More – Greatest Hits
- Ilan and me
- The Simplex, the Cyclic polytope, the Positroidron, the Amplituhedron, and Beyond
- From Oberwolfach: The Topological Tverberg Conjecture is False
- Midrasha Mathematicae #18: In And Around Combinatorics
- Quantum computing: achievable reality or unrealistic dream
- A Historical Picture Taken by Nimrod Megiddo
- Scott Triumphs* at the Shtetl

### Top Posts & Pages

- זה הזמן לשינוי
- Combinatorics and More - Greatest Hits
- Believing that the Earth is Round When it Matters
- Answer: Lord Kelvin, The Age of the Earth, and the Age of the Sun
- The Kadison-Singer Conjecture has beed Proved by Adam Marcus, Dan Spielman, and Nikhil Srivastava
- Happy Birthday Richard Stanley!
- Extremal Combinatorics I: Extremal Problems on Set Systems
- Academic Degrees and Sex
- Five Open Problems Regarding Convex Polytopes

### RSS

My favorite result in 2010 is that Francisco Santos disproved the Hirsch-Conjecture (statet ’57). The Hirsch Conjectures says that a Polytope in dimension d with n facets can not have a graph diameter greater than n-d. Link to the arxiv-article: http://arxiv.org/abs/1006.2814?context=cs

Would it be possible to tag or categorize this post “PlanetMO” or “mathoverflow” so that it might appear via http://www.mathblogging.org/planetmo?

Thanks!

Two that particularly struck me (and many other people) were the Guth-Katz solution of the Erdos distance problem and Tom Sanders’s results on Freiman’s theorem and Roth’s theorem. It hardly feels necessary to state these results, since they’ve been discussed a great deal, including here on this blog, but since those are the rules, here goes. Guth and Katz proved that any points in the plane must give rise to at least distinct distances, and Sanders proved (amongst other things) that the largest density of a subset of that does not contain an AP of length 3 is , to within a power of .

Thanks, Tim and Tim.