Monthly Archives: August 2013

Open Collaborative Mathematics over the Internet – Three Examples

After much hesitation, I decided to share with you the videos of my lecture: Open collaborative mathematics over the internet – three examples, that I gave last January in Doron Zeilberger’s seminar at Rutgers on experimental mathematics. Parts of the 47-minutes talk is  mathematical, while other parts are about mathematics on the Internet, blogs,  the polymath projects, MathOverflow, etc.

Here is the video of part I (30 minutes) and here is the video of  part II (17 minutes).

I tried to give some homage to Doron’s own lecture style, but when I saw the video, I could not ignore some aspects of my own style – complete indifference between plus and a minus, between x^2 and \sqrt x, between multiplying by something and dividing by the same thing, between subscripts and superscripts, between what are “rows: and what are “columns”, etc., and, in addition, randomly ending English words with an ‘s’ regardless of what English grammar dictates. Apologies. This was a rare occasion of giving a talk about “meta” matters of doing mathematics.

My first (and main) example was Erdős discrepancy’s problem, and I mentioned some experimental aspects, and heuristic arguments. The second example was Möbius randomness,  continued with some comments on MathOverflow, some  of the “goodies” one can earn participating in MathOverflow, and some comments on a debate regarding polymath projects organized by I.A.S a few years ago.  The third example was about mathematically oriented skepticism. This time not about my debate with Aram Harrow and quantum computing skepticism (that I briefly mentioned), but about my “Angry Birds” skepticism. The lecture was a mixture of a blackboard talk and presentation of various Internet site.

Summary and links

Here are the links to the Internet pages I presented with an outline of the lecture:

Video I (Erdős discrepancy problem)

00:00-00:43 Doron’s introduction; 00:43-4:00 On the screen: Erdős discrepancy problems: showing this post (EDP22) from Gowers’s blog. I talked  about the chaotic nature of mathematics on the Internet. Then I explained what are polymath projects, mentioned polymath1 and density Hales-Jewett, other polymath projects, and polymath5.

4:00-12:00 Polymath5, discrepancy of hypergraphs, and The Erdős Discrepancy problem. [6:06 “There is nothing more satisfying in a lecture than seeing attempts by the speaker to move an unmovable blackboard”]; Some basic observations, random signs, Mobius functions, the log n example.

12:00-16:00 Plan for the next fifteen minutes: a) Greedy methods, b)Heuristic approaches, c) Hereditary discrepancy

17:00 – 18:40 Alex Nokolov and Kinal Talwar’s work on hereditary discrepancy. On the screen: Talwar’s post discrepancy to privacy and back on Windows on Theory

18:40 -23:00   Greedy approaches. On the screen:  My question on MathOverflow – on a certain greedy algorithm for Erdős discrepancy problem; The MO answer by ‘rlo’; a follow up question

23:00 – 27:00 What is MathOverflow. On the screen: my old MO page. (Here is the new one.) What is  “MO- reputation,” which “badges” you can earn and for what; Earning “hats” in more advanced site: On the screen:  hat champions from TCS-Stackexchange, winter 2012. (This webpage is no longer available.)

27:00 – 30:00 My heuristic approach for EDP

Video II (Möbius randomness, and angry birds)

On the screen: My MO question on Möbius randomness of the Walsh functions

00:00-02:00 Diversion: The IAS debate on polymath projects between Gowers and Sarnak, and comments  by me and by Noga Alon.

02:00-05:40  Möbius randomness and computational complexity. What is Mõbius randomness (MR);  Peter Sarnak’s Jerusalem talk on MR, his belief regarding the hardness of factoring, and my opinion; The AC^0 prime number conjectures and Walsh functions. My MO question; Ben Green’s MO-answer to one problem and Bourgain’s result answering a second question.

05:40-7:50 A remaining question on MR of Rudin-Shapiro sequences. On the screen – my MO question Mobius randomness of the Rudin-Shapiro sequence; What is a bounty in MathOverflow; Diversion: The power that comes with high reputation on MO. Who won my bounty.

7:50-09:30  My debate with Aram Harrow on my Quantum computers skepticism. On the screen the debates first post and then the post “can you hear the shape of a quantum computer?

09:30-14:30 Example 3: Another mathematically related skepticism – Angry Birds. On the screen this page from Arqade : Most voted questions (a few are very amusing); Introduction to the game “Angry Birds”; My skeptical theory: “Angry Birds” is becoming easier with new versions, and the statistical argument for it. I mentioned the Arqade’s question “Is angry Birds deterministic” that got (then) 143 upvotes, and was a role-model for me.

abd

14:30-17:00 My Arqade question, my hopes, and how it was accepted by the computer-games community;  On the screen: my Arqade question:

Continue reading

Poznań: Random Structures and Algorithms 2013

michal  photo

Michal Karonski (left) who built Poland’s probabilistic combinatorics group at Poznań, and a sculpture honoring the Polish mathematicians who first broke the Enigma machine (right, with David Conlon, picture taken by Jacob Fox).

I am visiting now Poznań for the 16th Conference on Random Structures and Algorithms. This bi-annually series of conferences started 30 years ago (as a satellite conference to the 1983 ICM which took place in Warsaw) and this time there was also a special celebration for Bela Bollobás 70th birthday. I was looking forward to  this first visit to Poland which is, of course, a moving experience for me. Before Poznań I spent a few days in Gdańsk visiting Robert Alicki. Today (Wednesday)  at the Poznań conference I gave a lecture on threshold phenomena and here are the slides. In the afternoon we had the traditional random run with a record number of runners. Let me briefly tell you about very few of the other lectures: Update (Thursday): A very good day, and among others a great talk of Jacob Fox on Relative Szemeredi Theorem (click for the slides from a similar talk from Budapest) where he presented a joint work with David Conlon and Yufei Zhao giving a very general and strong form of Szemeredi theorem for quasi-random sparse sets, which among other applications, leads to a much simpler proof of the Green -Tao theorem.

Mathias Schacht

Mathias Schacht gave a wonderful talk  on extremal results in random graphs (click for the slides) which describes some large recent body of highly successful research on the topic. Here are two crucial slides, and going through the whole presentation can give a very good overall picture. ms1 mt2

Vera Sós

Vera Sós gave an inspiring talk about the random nature of graphs which are extremal to the Ramsey property and connections with graph limits. Vera presented the following very interesting conjecture on graph limits. We say that a sequence of graphs (G_n) has a limit if for every k and every graph H with k vertices the proportion in G_n of induced H-subgraphs among all k-vertex induced subgraphs tend to a limit. Let us also say that (G_n) has a V-limit if for every k and every e the proportion in G_n of induced subgraphs with k vertices and e edges among all k-vertex induced subgraphs tend to a limit. Sós’ question: Is having a V-limit equivalent to having a limit. This is open even in the case of quasirandomness, namely, when the limit is given by the Erdos-Renyi model G(n,p). (Update: in this case V-limit is equivalent to limit, as several participants of the conference observed.) Both a positive and a negative answer to this fundamental question would lead to many further (different) open problems.

Joel Spencer

Joel Spencer gave a great (blackboard) talk about algorithmic aspects of the probabilistic method, and how existence theorems via the probabilistic method now often require complicated randomized algorithm. Joel mentioned his famous six standard deviation theorem. In this case, Joel conjectured thirty years ago that there is no efficient algorithm to find the coloring promised by his theorem. Joel was delighted to see his conjecture being refuted first by Nikhil Bansal (who found an algorithm whose proof depends on the theorem) and then later by Shachar Lovett and  Raghu Meka (who found a new algorithm giving a new proof) . In fact, Joel said, having his conjecture disproved is even more delightful than having it proved. Based on this experience Joel and I are now proposing another conjecture: Kalai-Spencer (pre)conjecture: Every existence statement proved by the probabilistic method can be complemented by an efficient (possibly randomized) algorithm. By “complemented by an efficient algorithm” we mean that there is an efficient(polynomial time)  randomized algorithm to create the promised object with high probability.  We refer to it as a preconjecture since the term “the probabilistic method” is not entirely well-defined. But it may be possible to put this conjecture on formal grounds, and to discuss it informally even before.

BosonSampling and (BKS) Noise Sensitivity

Update (Nov 2014): Noise sensitivity of BosonSampling and computational complexity of noisy BosonSampling are studied in this paper by Guy Kindler and me. Some of my predictions from this post turned out to be false. In particular the noisy BosonSampling is not  flat and it does depend on the input matrix.  However when the noise level is a constant BosonSampling is in P, and when it is above 1 over the number of bosons, we cannot expect robust experimental outcomes.

 

—–

 

Following are some preliminary observations connecting BosonSampling, an interesting  computational task that quantum computers can perform (that we discussed in this post), and noise-sensitivity in the sense of Benjamini, Schramm, and myself (that we discussed here and here.)

BosonSampling and computational-complexity hierarchy-collapse

Suppose that you start with n bosons each can have m locations. The i-th boson is in superposition and occupies the j-th location with complex weight a_{ij}. The bosons are indistinguishable which makes the weight for a certain occupation pattern proportional to the permanent of a certain n by n submatrix of the n by m matrix of weights.

Boson Sampling is a task that a quantum computer can perform. As a matter of fact, it only requires a “boson machine” which represents only a fragment of quantum computation. A boson machine is a quantum computer which only manipulates indistinguishable bosons with gated described by phaseshifters and beamsplitters.

BosonSampling and boson machines were studied in a recent paper The Computational Complexity of Linear Optics of Scott Aaronson and Alex Arkhipov (AA). They proved (Theorem 1 in the paper) that if (exact) BosonSampling can be performed by a classical computer then this implies a collapse of the computational-complexity polynomial hierarchy (PH, for short). This result adds to a similar result achieved independently by Michael J. Bremner, Richard Jozsa, and Dan J. Shepherd (BJS) in the paper entitled: “Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy,” and to older results by  Barbara Terhal and David DiVincenzo (TD) in the paper Adaptive quantum computation, constant depth quantum circuits and Arthur-Merlin games, Quant. Inf. Comp. 4, 134-145 (2004).

Since universal quantum computers can achieve BosonSampling (and the other related computational tasks considered by TD and BJS), this is a very strong indication for the computational complexity advantage of quantum computers which arguably brings us with quantum computers to the “cozy neighborhood” of NP-hardness.

Noisy quantum computers with quantum fault-tolerance are also capable of exact BosonSampling and this strong computational-complexity quantum-superiority applies to them as well.

Realistic BosonSampling and Gaussian Permanent Estimation (GPE)

Aaronson an Arkhipov considered the following question that they referred to as Gaussian Permanent Approximation.

Problem (Problem 2 from AA’s paper): (|GPE|_{\pm}^2): Given as imput a matrix {\cal N}(0,1)_{\bf C}^{n \times n} of i.i.d Gaussians,together with error bounds ε, δ > o, estimate to within additive error \pm \epsilon n! with probability at leat 1-δ over X, in poly(n,1/\epsilon,1/\delta) time.

They conjectured that such Gaussian Permanent Approximation is computationally hard and showed (Theorem 3) that this would imply that sampling w.r.t. states achievable by boson machines cannot even be approximated by classical computing (unless PH collapses). They regarded questions about approximation more realistic in the context of decoherence where we cannot expect exact sampling.

Scott Aaronson also expressed guarded optimism that even without quantum fault-tolerance BosonSampling can be demonstrated by boson machines for 20-30 bosons, leading to strong experimental evidence for computational advantage of quantum computers (or, if you wish, against the efficient Church-Turing thesis).

Is it so?

More realistic BosonSampling and Noisy Gaussian Permanent Estimation (NGPE)

Let us consider the following variation that we refer to as Noisy Gaussian Permanent Estimation:

Problem 2′: (|NGPE|_{\pm}^2): Given as imput a matrix M= {\cal N}(0,1)_{\bf C}^{n \times n} of i.i.d Gaussians, and a parameter t>0 let NPER (M),  be the expected value of the permanent for \sqrt {1-t^2}M+E where E= {\cal N}(0,t)_{\bf C}^{n \times n}.  Given the input matrix M together with error bounds ε, δ > o, estimate NPER(M) to within additive error \pm \epsilon n! with probability at leat 1-δ over X, in poly(n,1/\epsilon,1/\delta) time.

Problem 2′ seems more relevant for noisy boson machines (without fault-tolerance). The noisy state of the computer is based on every single boson  being slightly mixed, and the permanent computation will average these individual mixtures. We can consider the relevant value for t to be a small constant. Can we expect Problem 2′ to be hard?

The answer for Question 2′ is surprising. I expect that even when t is very very tiny, namely t=n^{-\beta} for \beta <1, the expected value of NPER(M) (essentially) does not depend at all on M!

Noise Sensitivity a la Benjamini, Kalai and Schramm

Noise sensitivity for the sense described here for Boolean functions was studied in a paper by Benjamini Schramm and me in 1999.  (A related notion was studied by Tsirelson and Vershik.) Lectures on noise sensitivity and percolation is a new beautiful monograph by Christophe Garban and Jeff Steif which contains a description of noise sensitivity. The setting extends easily to the Gaussian case. See this paper by Kindler and O’donnell for the Gaussian case. In 2007, Ofer Zeituni and I studied the noise sensitivity in the Gaussian model of the maximal eigenvalue of random Gaussian matrices (but did not write it up).

NS

Noise sensitivity depends on the degree of the support of the Fourier expansion. For determinants or permanents of an n by n matrices the basic formulas as sums of generalized diagonals describe the Fourier expansion,  so the Fourier coefficients are supported on degree-n monomials. This implies that the determinant and the permanent are very noise sensitive.

Noisy Gaussian Permanent Estimation is easy

Noisy Gaussian Permanent Estimation is easy, even for very small amount of noise, because the outcome does not depend at all on the input. It is an interesting question what is the hardness of NGPE is when the noise is below the level of noise sensitivity.

Update (March, 2014) Exploring the connection between BosonSampling and BKS-noise sensitivity shows that the picture drawn here is incorrect. Indeed, the square of the permanent is not noise stable even when the noise is fairly small and this shows that the noisy distribution does not approximate the noiseless distribution. However the noisy distribution does depend on the input!

 

AA’s protocol and experimental BosonSampling

Scott and Alex proposed a simple experiment described as follows : “An important motivation for our results is that they immediately suggest a linear-optics experiment, which would use simple optical elements (beamsplitters and phaseshifters) to induce a Haar-random m \times m unitary transformation U on an input state of n photons, and would then check that the probabilities of various final states of the photons correspond to the permanents of n \times n submatrices, as predicted by quantum mechanics.”

Recently, four groups carried out interesting BosonSampling experiments with 3 bosons (thus for permanents of 3 by 3 matrices.) (See this post on Scott’s blog.)

BKS-noise sensitivity is giving  simple predictions on how things will behave as a function of the number of bosons and this can be tested even with experiments with very small number of bosons. When you increase the number of bosons the distribution will quickly become uniform for the various final states. The correlation between the probabilities and the value corresponding to permanents will rapidly go to zero.

Some follow-up questions

Here are a few interesting questions that deserve further study.

1) Does problem 2′ capture the general behavior of noisy boson machines? To what generality noise sensitivity applies for general functions described by Boson sampling distributions?

(There are several versions for photons-based quantum computers including even an important  model by Knill, Laflamme, and Milburn that support universal quantum computation. The relevance of BKS noise-sensitivity should be explored carefully for the various versions.)

2) Is the connection with noise sensitivity relevant to the possibility to have boson machines with fault tolerance?

3) What is the Gaussian-quantum analog for BKS’s theorem asserting that noise sensitivity is the law unless  we have substantial correlation with the majority function?

4) What can be said about noise-sensitivity of measurements for other quantum codes?

A few more remarks:

More regarding noisy boson machines and quantum fault tolerance

Noisy boson machines and BosonSampling are related to various other issues regarding quantum fault-tolerance. See my added recent remarks (about the issue of synchronization, and possible modeling using smoothed Lindblad evolutions) to my old post on AA’s work.

Noise sensitivity and the special role of the majority function

bks

The main result of Itai, Oded, and me was that a Boolean function which is not noise sensitive must have a substantial correlation with the majority function. Noise sensitivity and the special role of majority for it gave me some motivation to look at quantum fault-tolerance in 2005  (see also this post,) and this is briefly discussed in my first paper on the subject, but until now I didn’t find an actual connection between quantum fault-tolerance and BKS-noise-sensitivity.

Censorship

It is an interesting question which bosonic states are realistic, and it came up in some of my papers and in the discussion with Aram Harrow and Steve Flammia (and their paper on my “Conjecture C”).

A sort of conclusion

BosonSampling was offered as a way to prove that quantum mechanics allows a computational advantage without using the computational advantage for actual algorithmic purpose. If you wish, the AA’s protocol is offered as a sort of zero-knowledge proof that the efficient Church-Turing thesis is false.  It is a beautiful idea that attracted interest and good subsequent work from theoreticians and experimentalists. If the ideas described here are correct, BosonSampling and boson machines may give a clear understanding based on BKS noise-sensitivity for why quantum mechanics does not offer computational superiority (at least not without the magic of quantum fault-tolerance).

Avi’s joke and common sense

Here is a quote from AA referring to a joke by Avi Wigderson: “Besides bosons, the other basic particles in the universe are fermions; these include matter particles such as quarks and electrons. Remarkably, the amplitudes for n-fermion processes are given not by permanents but by determinants of n×n matrices. Despite the similarity of their definitions, it is well-known that the permanent and determinant differ dramatically in their computational properties; the former is #P-complete while the latter is in P. In a lecture in 2000, Wigderson called attention to this striking connection between the boson and fermion dichotomy of physics and the permanent-determinant dichotomy of computer science. He joked that, between bosons and fermions, ‘the bosons got the harder job.’ One could view this paper as a formalization of Wigderson’s joke.”

While sharing the admiration to Avi in general and Avi’s jokes in particular, if we do want to take Avi’s joke seriously (as we always should), then the common-sense approach would be first to try to understand why is it that nature treats bosons and fermions quite equally and the dramatic computational distinction is not manifested at all. The answer is that a crucial ingredient for a computational model is the modeling of noise/errors, and that noise-sensitivity makes bosons and fermions quite similar physically and computationally.

Eigenvalues, determinants, and Yuval Filmus

It is an interesting question (that I asked over Mathoverflow) to understand the Fourier expansion of the set of eigenvalues, the maximum eigenvalue and related functions. At a later point,  last May,  I was curious about the Fourier expansion of the determinant, and for the Boolean case I noticed remarkable properties of its Fourier expansion. So I decided to ask Yuval Filmus about it:

Dear Yuval

 I am curious about the following. Let D be the function defined on {-1,1}^n^2
which associates to every +1/1 matrix its determinant.
What can be said about the Fourier transform of D? It looks to me that easy arguments shows that the Fourier transform is supported only on subsets of the entries
so that in every raw and columns there are odd number of entries. Likely there are even further restrictions that I would be interested to explore.
Do you know anything about it?
best Gil

Yuval’s answer came a couple of hours later like a cold shower:

Hi Gil,

The determinant is a sum of products of generalized diagonals.
Each generalized diagonal is just a Fourier character, and they are all different.

In other words, the usual formula for the determinant *is* its Fourier transform

This reminded me of a lovely story of how I introduced Moni Naor to himself that I should tell sometime.

What else can a quantum computer sample?

The ability of quantum computers to sample (exactly) random complex Gaussian matrices according to the value of their permanents is truly amazing! If you are not too impressed by efficient factoring but still do not believe that QC can reach the neighborhood of NP-hard problems you may find this possibility too good to be true.

I am curious if sharp P reductions give us further results of this nature. For example,  can a QC sample random 3-SAT formulas (by a uniform distribution or by a certain other distribution coming from sharp-P reductions) according to the number of their satisfying assignments?

Can QC sample integer polytopes by their volume or by the number of integer points in them? Graphs by the number of 4-colorings?