Recent Comments
-
Recent Posts
- Algorithmic Game Theory: Past, Present, and Future
- Richard Stanley: Enumerative and Algebraic Combinatorics in the1960’s and 1970’s
- Igor Pak: How I chose Enumerative Combinatorics
- Quantum Computers: A Brief Assessment of Progress in the Past Decade
- Noga Alon and Udi Hrushovski won the 2022 Shaw Prize
- Oliver Janzer and Benny Sudakov Settled the Erdős-Sauer Problem
- Past and Future Events
- Joshua Hinman proved Bárány’s conjecture on face numbers of polytopes, and Lei Xue proved a lower bound conjecture by Grünbaum.
- Amazing: Jinyoung Park and Huy Tuan Pham settled the expectation threshold conjecture!
Top Posts & Pages
- Algorithmic Game Theory: Past, Present, and Future
- Amazing: Jinyoung Park and Huy Tuan Pham settled the expectation threshold conjecture!
- The Argument Against Quantum Computers - A Very Short Introduction
- Oliver Janzer and Benny Sudakov Settled the Erdős-Sauer Problem
- Combinatorics, Mathematics, Academics, Polemics, ...
- Quantum Computers: A Brief Assessment of Progress in the Past Decade
- Richard Stanley: Enumerative and Algebraic Combinatorics in the1960’s and 1970’s
- TYI 30: Expected number of Dice throws
- Amazing! Keith Frankston, Jeff Kahn, Bhargav Narayanan, Jinyoung Park: Thresholds versus fractional expectation-thresholds
RSS
Monthly Archives: September 2013
Real Analysis Introductory Mini-courses at Simons Institute
The Real Analysis ‘Boot Camp’ included three excellent mini-courses. Inapproximability of Constraint Satisfaction Problems (5 lectures) Johan Håstad (KTH Royal Institute of Technology) (Lecture I, Lecture II, Lecture III, Lecture IV, Lecture V) Unlike more traditional ‘boot camps’ Johan rewarded answers and questions … Continue reading
Analysis of Boolean Functions – week 4
Lecture 6 Last week we discussed two applications of the Fourier-Walsh plus hypercontractivity method and in this lecture we will discuss one additional application: The lecture was based on a 5-pages paper by Ehud Friedgut and Jeff Kahn: On the number … Continue reading
Polymath 8 – a Success!
Yitang Zhang Update (July 22, ’14). The polymath8b paper “Variants of the Selberg sieve, and bounded intervals containing many primes“, is now on the arXiv. See also this post on Terry Tao’s blog. Since the last update, we also had here … Continue reading
Analysis of Boolean Functions – Week 3
Lecture 4 In the third week we moved directly to the course’s “punchline” – the use of Fourier-Walsh expansion of Boolean functions and the use of Hypercontractivity. Before that we started with a very nice discrete isoperimetric question on a … Continue reading
Richard Stanley: How the Proof of the Upper Bound Theorem (for spheres) was Found
The upper bound theorem asserts that among all d-dimensional polytopes with n vertices, the cyclic polytope maximizes the number of facets (and k-faces for every k). It was proved by McMullen for polytopes in 1970, and by Stanley for general triangulations … Continue reading
Simons@UCBerkeley
Raghu Meka talking at the workshop I spend the semester in Berkeley at the newly founded Simons Institute for the Theory of Computing. The first two programs demonstrate well the scope of the center and why it is needed. One program … Continue reading
Posted in Conferences, Updates
1 Comment
Analysis of Boolean functions – week 2
Post on week 1; home page of the course analysis of Boolean functions Lecture II: We discussed two important examples that were introduced by Ben-Or and Linial: Recursive majority and tribes. Recursive majority (RM): is a Boolean function with variables … Continue reading
Posted in Combinatorics, Computer Science and Optimization, Probability, Teaching
Tagged Boolean functions, Tribes
Leave a comment
Around Borsuk’s Conjecture 3: How to Save Borsuk’s conjecture
Borsuk asked in 1933 if every bounded set K of diameter 1 in can be covered by d+1 sets of smaller diameter. A positive answer was referred to as the “Borsuk Conjecture,” and it was disproved by Jeff Kahn and me in 1993. … Continue reading
Analysis of Boolean Functions – week 1
Home page of the course. In the first lecture I defined the discrete n-dimensional cube and Boolean functions. Then I moved to discuss five problems in extremal combinatorics dealing with intersecting families of sets. 1) The largest possible intersecting family … Continue reading