Here is, with Peter’s kind permission, a rebloging of Peter’s post on the automorphism group of
. Other very nice accounts are by the Secret blogging seminar; John Baez,; A paper by Howard, Millson, Snowden, and Vakil; and most famously the legendary Chapter 6 (!) from the book by Cameron and Van-Lint (I dont have an electronic version for it).
My TYI 25 question about it arose from Sonia Balagopalan’s lecture in our combinatorics seminar on the 16 vertex triangulation of 4-dimensional projective space. (Here is the link to her paper.)
No account of the symmetric group can be complete without mentioning the remarkable fact that the symmetric group of degree n (finite or infinite) has an outer automorphism if and only if n=6.
Here are the definitions. An automorphism of a group G is a permutation p of the group which preserves products, that is, (xy)p=(xp)(yp) for all x,y (where, as a card-carrying algebraist, I write the function on the right of its argument). The automorphisms of G themselves form a group, and the inner automorphisms (the conjugation maps x?g-1xg) form a normal subgroup; the factor group is the outer automorphism group of G. Abusing terminology, we say that G has outer automorphisms if the outer automorphism group is not the trivial group, that is, not all automorphisms are inner.
Now the symmetric group S
View original post 1,245 more words
Yet another very nice account is given in this post by Richard Green “The exceptional symmetry” https://plus.google.com/u/0/101584889282878921052/posts/ioQW2zGjwwM
Pingback: New Year’s Greeting from Franz Kafka « Log24