Two Delightful Major Simplifications

simplify

Arguably mathematics is getting harder, although some people claim that also in the old times parts of it were hard and known only to a few experts before major simplifications had changed  matters. Let me report here about two recent remarkable simplifications of major theorems. I am thankful to Nati Linial who told me about the first and to Itai Benjamini and Gady Kozma who told me about the second. Enjoy!

Random regular graphs are nearly Ramanujan: Charles Bordenave gives a new proof of Friedman’s second eigenvalue Theorem and its extension to random lifts

Here is the paper. Abstract: It was conjectured by Alon and proved by Friedman that a random d-regular graph has nearly the largest possible spectral gap, more precisely, the largest absolute value of the non-trivial eigenvalues of its adjacency matrix is at most 2\sqrt{d-1} +o(1) with probability tending to one as the size of the graph tends to infinity. We give a new proof of this statement. We also study related questions on random n-lifts of graphs and improve a recent result by Friedman and Kohler.

A simple proof for the theorem of Aizenman and Barsky and of Menshikov. Hugo Duminil-Copin and Vincent Tassion give  a new proof of the sharpness of the phase transition for Bernoulli percolation on \mathbb Z^d

Here is the paper Abstract: We provide a new proof of the sharpness of the phase transition for nearest-neighbour Bernoulli percolation. More precisely, we show that – for p<p_c, the probability that the origin is connected by an open path to distance $n$ decays exponentially fast in $n$. – for p>p_c, the probability that the origin belongs to an infinite cluster satisfies the mean-field lower bound \theta(p)\ge\tfrac{p-p_c}{p(1-p_c)}. This note presents the argument of this paper by the same authors, which is valid for long-range Bernoulli percolation (and for the Ising model) on arbitrary transitive graphs in the simpler framework of nearest-neighbour Bernoulli percolation on \mathbb Z^d.

This entry was posted in Combinatorics, Probability, Updates and tagged , , , , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s