Recent Comments
-
Recent Posts
- Algorithmic Game Theory: Past, Present, and Future
- Richard Stanley: Enumerative and Algebraic Combinatorics in the1960’s and 1970’s
- Igor Pak: How I chose Enumerative Combinatorics
- Quantum Computers: A Brief Assessment of Progress in the Past Decade
- Noga Alon and Udi Hrushovski won the 2022 Shaw Prize
- Oliver Janzer and Benny Sudakov Settled the Erdős-Sauer Problem
- Past and Future Events
- Joshua Hinman proved Bárány’s conjecture on face numbers of polytopes, and Lei Xue proved a lower bound conjecture by Grünbaum.
- Amazing: Jinyoung Park and Huy Tuan Pham settled the expectation threshold conjecture!
Top Posts & Pages
- Algorithmic Game Theory: Past, Present, and Future
- Amazing: Jinyoung Park and Huy Tuan Pham settled the expectation threshold conjecture!
- The Argument Against Quantum Computers - A Very Short Introduction
- Oliver Janzer and Benny Sudakov Settled the Erdős-Sauer Problem
- Combinatorics, Mathematics, Academics, Polemics, ...
- Quantum Computers: A Brief Assessment of Progress in the Past Decade
- TYI 30: Expected number of Dice throws
- Game Theory 2021
- Richard Stanley: Enumerative and Algebraic Combinatorics in the1960’s and 1970’s
RSS
Monthly Archives: March 2017
My Answer to TYI- 28
The fifteen remarkable individuals in the previous post are all the recipients of the SIGACT Distinguished Service Prize since it was established in 1997. The most striking common feature to all of them is, in my view, that they are all … Continue reading
Posted in Computer Science and Optimization, Women in science
Tagged SIGACT, Women in science
2 Comments
Test your intuition 28: What is the most striking common feature to all these remarkable individuals
Test your intuition: What is the most striking common feature to all these fifteen remarkable individuals László Babai; Avi Wigderson; Lance Fortnow; Lane Hemaspaandra; Sampath Kannan; Hal Gabow; Richard Karp; Tom Leighton; Rockford J. Ross; Alan Selman; Michael Langston; S. … Continue reading
R(5,5) ≤ 48
The Ramsey numbers R(s,t) The Ramsey number R(s, t) is defined to be the smallest n such that every graph of order n contains either a clique of s vertices or an independent set of t vertices. Understanding the values … Continue reading
Posted in Combinatorics, Open problems, Updates
Tagged Brendan D. McKay, Vigleik Angeltveit
Leave a comment
Test Your Intuition (27) about the Alon-Tarsi Conjecture
On the occasion of Polymath 12 devoted to the Rota basis conjecture let me remind you about the Alon-Tarsi conjecture and test your intuition concerning a strong form of the conjecture. The sign of a Latin square is the product … Continue reading
Posted in Combinatorics, Open problems, Test your intuition
Tagged Alon-Tarsi conjecture, Polymath12
1 Comment