Recent Comments

Recent Posts
 TYI 41: How many steps does it take for a simple random walk on the discrete cube to reach the uniform distribution?
 Gil’s Collegial Quantum Supremacy Skepticism FAQ
 Amazing! Keith Frankston, Jeff Kahn, Bhargav Narayanan, Jinyoung Park: Thresholds versus fractional expectationthresholds
 Starting today: Kazhdan Sunday seminar: “Computation, quantumness, symplectic geometry, and information”
 The story of Poincaré and his friend the baker
 Gérard Cornuéjols’s baker’s eighteen 5000 dollars conjectures
 Noisy quantum circuits: how do we know that we have robust experimental outcomes at all? (And do we care?)
 Test Your Intuition 40: What Are We Celebrating on Sept, 28, 2019? (And answer to TYI39.)
 Quantum computers: amazing progress (Google & IBM), and extraordinary but probably false supremacy claims (Google).
Top Posts & Pages
 Gil's Collegial Quantum Supremacy Skepticism FAQ
 TYI 41: How many steps does it take for a simple random walk on the discrete cube to reach the uniform distribution?
 TYI 30: Expected number of Dice throws
 Lior, Aryeh, and Michael
 Elchanan Mossel's Amazing Dice Paradox (your answers to TYI 30)
 Quantum computers: amazing progress (Google & IBM), and extraordinary but probably false supremacy claims (Google).
 Amazing: Hao Huang Proved the Sensitivity Conjecture!
 Jeff Kahn and Jinyoung Park: Maximal independent sets and a new isoperimetric inequality for the Hamming cube.
 Aubrey de Grey: The chromatic number of the plane is at least 5
RSS
Monthly Archives: February 2019
Dan Romik Studies the Riemann’s Zeta Function, and Other Zeta News.
Updates to previous posts: Karim Adiprasito expanded in a comment to his post on the gconjecture on how to move from vertexdecomposable spheres to general spheres. Some photos were added to the post: Three pictures. Dan Romik on the Zeta … Continue reading
Posted in Number theory, Updates
Tagged Brad Rodgers, Dan Romik, Don Zagier, Ken Ono, Larry Rolen, Michel Griffin, polymath15, Terry Tao, Zeta function
4 Comments
Karim Adiprasito: The gConjecture for Vertex Decomposible Spheres
J Scott Provan (site) The following post was kindly contributed by Karim Adiprasito. (Here is the link to Karim’s paper.) Update: See Karim’s comment on the needed ideas for extend the proof to the general case. See also in the … Continue reading
Posted in Combinatorics, Convex polytopes, Geometry, Guest blogger
Tagged gconjecture, J Scott Provan, Karim Adiprasito, Leonid Gurvits, Lou Billera
9 Comments
Attila Por’s Universality Result for Tverberg Partitions
In this post I would like to tell you about three papers and three theorems. I am thankful to Moshe White and Imre Barany for helpful discussions. a) Universality of vector sequences and universality of Tverberg partitions, by Attila Por; Theorem … Continue reading
Henry Cohn, Abhinav Kumar, Stephen D. Miller, Danylo Radchenko, and Maryna Viazovska: Universal optimality of the E8 and Leech lattices and interpolation formulas
Henry Cohn A follow up paper on the tight bounds for sphere packings in eight and 24 dimensions. (Thanks, again, Steve, for letting me know.) For the 2016 breakthroughs see this post, this post of John Baez, this article by Erica Klarreich on … Continue reading
Extremal Combinatorics V: POSETS
This is the remaining post V on partially ordered sets of my series on extremal combinatorics (I,II,III,IV,VI). We will talk here about POSETS – partially ordered sets. The study of order is very important in many areas of mathematics starting … Continue reading
Konstantin Tikhomirov: The Probability that a Bernoulli Matrix is Singular
Konstantin Tikhomirov An old problem in combinatorial random matrix theory is cracked! Singularity of random Bernoulli matrices by Konstantin Tikhomirov Abstract: For each , let be an n×n random matrix with independent ±1 entries. We show that P( is singular}=, … Continue reading