### Recent Comments

Giving a talk at Eli… on Academic Degrees and Sex Johan Aspegren on To Cheer You Up in Difficult T… To cheer you up in d… on Another sensation – Anni… Gil Kalai on To Cheer You Up in Difficult T… Gil Kalai on To Cheer You Up in Difficult T… Alexander Barvinok on To Cheer You Up in Difficult T… Kevin on To Cheer You Up in Difficult T… Gil Kalai on To Cheer You Up in Difficult T… Arseniy on To Cheer You Up in Difficult T… Alexander Barvinok on To Cheer You Up in Difficult T… uniform on To Cheer You Up in Difficult T… Arseniy on To Cheer You Up in Difficult T… -
### Recent Posts

- Giving a talk at Eli and Ricky’s geometry seminar. (October 19, 2021)
- To cheer you up in difficult times 32, Annika Heckel’s guest post: How does the Chromatic Number of a Random Graph Vary?
- To Cheer You Up in Difficult Times 31: Federico Ardila’s Four Axioms for Cultivating Diversity
- Dream a Little Dream: Quantum Computer Poetry for the Skeptics (Part I, mainly 2019)
- To Cheer you up in difficult times 30: Irit Dinur, Shai Evra, Ron Livne, Alex Lubotzky, and Shahar Mozes Constructed Locally Testable Codes with Constant Rate, Distance, and Locality
- To cheer you up in difficult times 29: Free will, predictability and quantum computers
- Alef’s corner: Mathematical research
- Let me tell you about three of my recent papers
- Mathematical news to cheer you up

### Top Posts & Pages

- Giving a talk at Eli and Ricky's geometry seminar. (October 19, 2021)
- Academic Degrees and Sex
- Answer: Lord Kelvin, The Age of the Earth, and the Age of the Sun
- To Cheer You Up in Difficult Times 31: Federico Ardila's Four Axioms for Cultivating Diversity
- The Argument Against Quantum Computers - A Very Short Introduction
- Richard Stanley: How the Proof of the Upper Bound Theorem (for spheres) was Found
- To cheer you up in difficult times 32, Annika Heckel's guest post: How does the Chromatic Number of a Random Graph Vary?
- Amazing: Karim Adiprasito proved the g-conjecture for spheres!
- TYI 30: Expected number of Dice throws

### RSS

# Monthly Archives: February 2019

## Dan Romik Studies the Riemann’s Zeta Function, and Other Zeta News.

Updates to previous posts: Karim Adiprasito expanded in a comment to his post on the g-conjecture on how to move from vertex-decomposable spheres to general spheres. Some photos were added to the post: Three pictures. Dan Romik on the Zeta … Continue reading

Posted in Number theory, Updates
Tagged Brad Rodgers, Dan Romik, Don Zagier, Ken Ono, Larry Rolen, Michel Griffin, polymath15, Terry Tao, Zeta function
4 Comments

## Karim Adiprasito: The g-Conjecture for Vertex Decomposible Spheres

J Scott Provan (site) The following post was kindly contributed by Karim Adiprasito. (Here is the link to Karim’s paper.) Update: See Karim’s comment on the needed ideas for extend the proof to the general case. See also in the … Continue reading

Posted in Combinatorics, Convex polytopes, Geometry, Guest blogger
Tagged g-conjecture, J Scott Provan, Karim Adiprasito, Leonid Gurvits, Lou Billera
9 Comments

## Attila Por’s Universality Result for Tverberg Partitions

In this post I would like to tell you about three papers and three theorems. I am thankful to Moshe White and Imre Barany for helpful discussions. a) Universality of vector sequences and universality of Tverberg partitions, by Attila Por; Theorem … Continue reading

## Henry Cohn, Abhinav Kumar, Stephen D. Miller, Danylo Radchenko, and Maryna Viazovska: Universal optimality of the E8 and Leech lattices and interpolation formulas

Henry Cohn A follow up paper on the tight bounds for sphere packings in eight and 24 dimensions. (Thanks, again, Steve, for letting me know.) For the 2016 breakthroughs see this post, this post of John Baez, this article by Erica Klarreich on … Continue reading

## Extremal Combinatorics V: POSETS

This is the remaining post V on partially ordered sets of my series on extremal combinatorics (I,II,III,IV,VI). We will talk here about POSETS – partially ordered sets. The study of order is very important in many areas of mathematics starting … Continue reading

## Konstantin Tikhomirov: The Probability that a Bernoulli Matrix is Singular

Konstantin Tikhomirov An old problem in combinatorial random matrix theory is cracked! Singularity of random Bernoulli matrices by Konstantin Tikhomirov Abstract: For each , let be an n×n random matrix with independent ±1 entries. We show that P( is singular}=, … Continue reading