### Recent Comments

dinostraurio on Seven Problems Around Tverberg… Matthew Cory on The Quantum Computer Puzzle @… Matthew Cory on The Quantum Computer Puzzle @… The Quantum Computer… on A Breakthrough by Maryna Viazo… The Quantum Computer… on Stefan Steinerberger: The Ulam… The Quantum Computer… on Polymath10-post 4: Back to the… Philip Gibbs on Stefan Steinerberger: The Ulam… Philip Gibbs on Stefan Steinerberger: The Ulam… Daniel on Stefan Steinerberger: The Ulam… Philip Gibbs on Stefan Steinerberger: The Ulam… Gil Kalai on Stefan Steinerberger: The Ulam… Gabriel Nivasch on Stefan Steinerberger: The Ulam… -
### Recent Posts

- The Quantum Computer Puzzle @ Notices of the AMS
- Three Conferences: Joel Spencer, April 29-30, Courant; Joel Hass May 20-22, Berkeley, Jean Bourgain May 21-24, IAS, Princeton
- Math and Physics Activities at HUJI
- Stefan Steinerberger: The Ulam Sequence
- TYI 26: Attaining the Maximum
- A Breakthrough by Maryna Viazovska Leading to the Long Awaited Solutions for the Densest Packing Problem in Dimensions 8 and 24
- Polymath10-post 4: Back to the drawing board?
- News (mainly polymath related)
- Polymath 10 Post 3: How are we doing?

### Top Posts & Pages

- A Breakthrough by Maryna Viazovska Leading to the Long Awaited Solutions for the Densest Packing Problem in Dimensions 8 and 24
- Seven Problems Around Tverberg's Theorem
- Answer: Lord Kelvin, The Age of the Earth, and the Age of the Sun
- Polymath10-post 4: Back to the drawing board?
- The Quantum Computer Puzzle @ Notices of the AMS
- Polymath10: The Erdos Rado Delta System Conjecture
- The Kadison-Singer Conjecture has beed Proved by Adam Marcus, Dan Spielman, and Nikhil Srivastava
- Why Quantum Computers Cannot Work: The Movie!
- About

### RSS

# Search Results for: erdos

## Polymath10: The Erdos Rado Delta System Conjecture

The purpose of this post is to start the polymath10 project. It is one of the nine projects (project 3d) proposed by Tim Gowers in his post “possible future polymath projects”. The plan is to attack Erdos-Rado delta system conjecture also known as the … Continue reading

Posted in Combinatorics, Polymath10
Tagged Alexandr Kostochka, Joel Spencer, Paul Erdos, Richard Rado
137 Comments

## Erdős’ Birthday

Paul Erdős was born on March 26, 1913 2013 a hundred years ago. This picture (from Ehud Friedgut’s homepage) was taken in September ’96 in a Chinese restaurant in Warsaw, a few days before Paul Erdős passed away. The other diners are Svante Janson, Tomasz Łuczack and … Continue reading

## János Pach: Guth and Katz’s Solution of Erdős’s Distinct Distances Problem

Click here for the most recent polymath3 research thread. Erdős and Pach celebrating another November day many years ago. The Wolf disguised as Little Red Riding Hood. Pach disguised as another Pach. This post is authored by János Pach A … Continue reading

Posted in Combinatorics, Geometry, Guest blogger, Open problems
Tagged Larry Guth, Nets Hawk Katz
13 Comments

## Polymath10-post 4: Back to the drawing board?

It is time for a new polymath10 post on the Erdos-Rado Sunflower Conjecture. (Here are the links for post1, post2, post3.) Let me summarize the discussion from Post 3 and we can discuss together what directions to peruse. It is … Continue reading

## News (mainly polymath related)

Update (Jan 21) j) Polymath11 (?) Tim Gowers’s proposed a polymath project on Frankl’s conjecture. If it will get off the ground we will have (with polymath10) two projects running in parallel which is very nice. (In the comments Jon Awbrey gave … Continue reading

## Polymath 10 Post 3: How are we doing?

The main purpose of this post is to start a new research thread for Polymath 10 dealing with the Erdos-Rado Sunflower problem. (Here are links to post 2 and post 1.) Here is a very quick review of where we … Continue reading

Posted in Combinatorics, Mathematics over the Internet, Open problems, Polymath10
Tagged polymath10, sunflower conjecture
103 Comments

## Polymath10, Post 2: Homological Approach

We launched polymath10 a week ago and it is time for the second post. In this post I will remind the readers what the Erdos-Rado Conjecture and the Erdos-Rado theorem are, briefly mention some points made in the previous post and in … Continue reading

## Convex Polytopes: Seperation, Expansion, Chordality, and Approximations of Smooth Bodies

I am happy to report on two beautiful results on convex polytopes. One disproves an old conjecture of mine and one proves an old conjecture of mine. Loiskekoski and Ziegler: Simple polytopes without small separators. Does Lipton-Tarjan’s theorem extends to high … Continue reading

## EDP Reflections and Celebrations

The Problem In 1932, Erdős conjectured: Erdős Discrepancy Conjecture (EDC) [Problem 9 here] For any constant , there is an such that the following holds. For any function , there exists an and a such that For any , … Continue reading