Recent Comments

Recent Posts
 Polymath 10 post 6: The ErdosRado sunflower conjecture, and the Turan (4,3) problem: homological approaches.
 Polymath 10 Emergency Post 5: The ErdosSzemeredi Sunflower Conjecture is Now Proven.
 Mind Boggling: Following the work of Croot, Lev, and Pach, Jordan Ellenberg settled the cap set problem!
 More Math from Facebook
 The Erdős Szekeres polygon problem – Solved asymptotically by Andrew Suk.
 The Quantum Computer Puzzle @ Notices of the AMS
 Three Conferences: Joel Spencer, April 2930, Courant; Joel Hass May 2022, Berkeley, Jean Bourgain May 2124, IAS, Princeton
 Math and Physics Activities at HUJI
 Stefan Steinerberger: The Ulam Sequence
Top Posts & Pages
 Polymath 10 Emergency Post 5: The ErdosSzemeredi Sunflower Conjecture is Now Proven.
 The Erdős Szekeres polygon problem  Solved asymptotically by Andrew Suk.
 A Breakthrough by Maryna Viazovska Leading to the Long Awaited Solutions for the Densest Packing Problem in Dimensions 8 and 24
 Answer: Lord Kelvin, The Age of the Earth, and the Age of the Sun
 Mind Boggling: Following the work of Croot, Lev, and Pach, Jordan Ellenberg settled the cap set problem!
 Polymath10post 4: Back to the drawing board?
 When It Rains It Pours
 Believing that the Earth is Round When it Matters
 Polymath 10 post 6: The ErdosRado sunflower conjecture, and the Turan (4,3) problem: homological approaches.
RSS
Search Results for: erdos
Polymath 10 post 6: The ErdosRado sunflower conjecture, and the Turan (4,3) problem: homological approaches.
In earlier posts I proposed a homological approach to the ErdosRado sunflower conjecture. I will describe again this approach in the second part of this post. Of course, discussion of other avenues for the study of the conjecture are welcome. The purpose … Continue reading
Polymath 10 Emergency Post 5: The ErdosSzemeredi Sunflower Conjecture is Now Proven.
While slowly writing Post 5 (now planned to be Post 6) of our polymath10 project on the ErdosRado sunflower conjecture, the very recent proof (see this post) that cap sets have exponentially small density has changed matters greatly! It implies … Continue reading
Polymath10: The Erdos Rado Delta System Conjecture
The purpose of this post is to start the polymath10 project. It is one of the nine projects (project 3d) proposed by Tim Gowers in his post “possible future polymath projects”. The plan is to attack ErdosRado delta system conjecture also known as the … Continue reading
Posted in Combinatorics, Polymath10
Tagged Alexandr Kostochka, Joel Spencer, Paul Erdos, Richard Rado
137 Comments
Erdős’ Birthday
Paul Erdős was born on March 26, 1913 2013 a hundred years ago. This picture (from Ehud Friedgut’s homepage) was taken in September ’96 in a Chinese restaurant in Warsaw, a few days before Paul Erdős passed away. The other diners are Svante Janson, Tomasz Łuczack and … Continue reading
János Pach: Guth and Katz’s Solution of Erdős’s Distinct Distances Problem
Click here for the most recent polymath3 research thread. Erdős and Pach celebrating another November day many years ago. The Wolf disguised as Little Red Riding Hood. Pach disguised as another Pach. This post is authored by János Pach A … Continue reading
Posted in Combinatorics, Geometry, Guest blogger, Open problems
Tagged Larry Guth, Nets Hawk Katz
13 Comments
Mind Boggling: Following the work of Croot, Lev, and Pach, Jordan Ellenberg settled the cap set problem!
A quote from a recent post from Jordan Ellenberg‘s blog Quomodocumque: Briefly: it seems to me that the idea of the CrootLevPach paper I posted about yesterday (GK: see also my last post) can indeed be used to give a new bound … Continue reading
Posted in Combinatorics, Open problems, Updates
Tagged Cap sets, Dion Gijswijt, Ernie Croot, Jordan Ellenberg, Peter Pach, Seva Lev.
18 Comments
More Math from Facebook
David Conlon pointed out to two remarkable papers that appeared on the arxive: Joel Moreira solves an old problem in Ramsey’s theory. Monochromatic sums and products in . Abstract: An old question in Ramsey theory asks whether any finite coloring … Continue reading
Posted in Combinatorics, Mathematics over the Internet, Updates
Tagged Ernie Croot, Joel Moreira, Peter Pach, Vsevolod Lev
3 Comments
Polymath10post 4: Back to the drawing board?
It is time for a new polymath10 post on the ErdosRado Sunflower Conjecture. (Here are the links for post1, post2, post3.) Let me summarize the discussion from Post 3 and we can discuss together what directions to peruse. It is … Continue reading
News (mainly polymath related)
Update (Jan 21) j) Polymath11 (?) Tim Gowers’s proposed a polymath project on Frankl’s conjecture. If it will get off the ground we will have (with polymath10) two projects running in parallel which is very nice. (In the comments Jon Awbrey gave … Continue reading