Search Results for: sunflower conjecture

Amazing: Ryan Alweiss, Shachar Lovett, Kewen Wu, Jiapeng Zhang made dramatic progress on the Sunflower Conjecture

WOW! The new paper https://arxiv.org/abs/1908.08483 improved bounds for the sunflower lemma gives the most dramatic progress on the sunflower conjecture since it was asked. Congratulations to Ryan Alweiss, Shachar Lovett, Kewen Wu, Jiapeng Zhang. (Written on my smartphone will expand … Continue reading

Posted in Combinatorics, Uncategorized | 4 Comments

Polymath 10 post 6: The Erdos-Rado sunflower conjecture, and the Turan (4,3) problem: homological approaches.

In earlier posts I proposed a homological approach to the Erdos-Rado sunflower conjecture.  I will describe again this approach in the second part of this post. Of course, discussion of other avenues for the study of the conjecture are welcome. The purpose … Continue reading

Posted in Combinatorics, Mathematics over the Internet, Open problems, Polymath10 | Tagged , | 6 Comments

Polymath 10 Emergency Post 5: The Erdos-Szemeredi Sunflower Conjecture is Now Proven.

While slowly writing Post 5 (now planned to be Post 6) of our polymath10 project on the Erdos-Rado sunflower conjecture, the very recent proof (see this post) that cap sets have  exponentially small density has changed matters greatly! It implies … Continue reading

Posted in Combinatorics, Polymath10 | Tagged , , , | 36 Comments

Mohammad Ghomi and Joel Spruck settled the Cartan-Hadamard conjecture!

Greetings from Oberwolfach from a great conference on algebraic, geometric, and topological combinatorics. Stay tuned for more pictures and updates from Oberwolfach and CERN, and also in case you did not see it already here is the link to the … Continue reading

Posted in Geometry, Uncategorized | Tagged , , | 2 Comments

Polymath10: The Erdos Rado Delta System Conjecture

The purpose of this post is to start the polymath10 project. It is one of the nine projects (project 3d) proposed by Tim Gowers in his post “possible future polymath projects”. The plan is to attack Erdos-Rado delta system conjecture also known as the … Continue reading

Posted in Combinatorics, Polymath10 | Tagged , , , | 141 Comments

Cap Sets, Sunflowers, and Matrix Multiplication

This post follows a recent paper On sunflowers  and matrix multiplication by Noga Alon, Amir Spilka, and Christopher Umens (ASU11) which rely on an earlier paper Group-theoretic algorithms for matrix multiplication, by Henry Cohn, Robert Kleinberg, Balasz Szegedy, and Christopher Umans (CKSU05), … Continue reading

Posted in Combinatorics, Computer Science and Optimization, Open problems | Tagged , , , , , , | 9 Comments

Computer Science and its Impact on our Future

A couple weeks ago I told you about Avi Wigderson’s vision on the connections between the theory of computing and other areas of mathematics on the one hand and between computer science and other areas of science, technology and society … Continue reading

Posted in Academics, Computer Science and Optimization, Quantum, Updates | Tagged | 1 Comment

Polymath10 conclusion

The Polymath10 project on the Erdos-Rado Delta-System conjecture took place over this blog from November 2015 to May 2016. I aimed for an easy-going project that people could participate calmly aside from their main research efforts and  the duration of … Continue reading

Posted in Combinatorics, Open problems, Polymath10 | Tagged , | 5 Comments

Mind Boggling: Following the work of Croot, Lev, and Pach, Jordan Ellenberg settled the cap set problem!

A quote from a recent post from Jordan Ellenberg‘s blog Quomodocumque: Briefly:  it seems to me that the idea of the Croot-Lev-Pach paper I posted about yesterday (GK: see also my last post) can indeed be used to give a new bound … Continue reading

Posted in Combinatorics, Open problems, Updates | Tagged , , , , , | 22 Comments

Polymath10-post 4: Back to the drawing board?

It is time for a new polymath10 post on the Erdos-Rado Sunflower Conjecture. (Here are the links for post1, post2, post3.) Let me summarize the discussion from Post 3 and we can discuss together what directions to peruse. It is … Continue reading

Posted in Combinatorics, Mathematics over the Internet, Polymath10 | 12 Comments