### Recent Comments

GFP on Polymath10, Post 2: Homologica… Philip Gibbs on Polymath10, Post 2: Homologica… Gil Kalai on Polymath10, Post 2: Homologica… Gil Kalai on Polymath10, Post 2: Homologica… Philip Gibbs on Polymath10, Post 2: Homologica… Gil Kalai on Polymath10, Post 2: Homologica… Philip Gibbs on Polymath10, Post 2: Homologica… Philip Gibbs on Polymath10, Post 2: Homologica… Philip Gibbs on Polymath10, Post 2: Homologica… Philip Gibbs on Polymath10, Post 2: Homologica… Philip Gibbs on Polymath10, Post 2: Homologica… gowers on Polymath10, Post 2: Homologica… -
### Recent Posts

- Polymath10, Post 2: Homological Approach
- Polymath10: The Erdos Rado Delta System Conjecture
- Convex Polytopes: Seperation, Expansion, Chordality, and Approximations of Smooth Bodies
- Igor Pak’s collection of combinatorics videos
- EDP Reflections and Celebrations
- Séminaire N. Bourbaki – Designs Exist (after Peter Keevash) – the paper
- Important formulas in Combinatorics
- Updates and plans III.
- NogaFest, NogaFormulas, and Amazing Cash Prizes

### Top Posts & Pages

- The Kadison-Singer Conjecture has beed Proved by Adam Marcus, Dan Spielman, and Nikhil Srivastava
- Polymath10, Post 2: Homological Approach
- Polymath10: The Erdos Rado Delta System Conjecture
- Why is Mathematics Possible: Tim Gowers's Take on the Matter
- New Ramanujan Graphs!
- Believing that the Earth is Round When it Matters
- About
- Answer: Lord Kelvin, The Age of the Earth, and the Age of the Sun
- From Oberwolfach: The Topological Tverberg Conjecture is False

### RSS

# Category Archives: Combinatorics

## More Reasons for Small Influence

Readers of the big-league ToC blogs have already heard about the breakthrough paper An average-case depth hierarchy theorem for Boolean circuits by Benjamin Rossman, Rocco Servedio, and Li-Yang Tan. Here are blog reports on Computational complexity, on the Shtetl Optimized, and of Godel … Continue reading

## My Fest

It is a pleasure to announce my own birthday conference which will take place in Jerusalem on June 15-16 2015. Here is the meeting’s homepage! The organizers asked me also to mention that some support for accommodation in Jerusalem for the … Continue reading

Posted in Combinatorics, Conferences, Updates
4 Comments

## New Isoperimetric Results for Testing Monotonicity

Muli, Dor and Subash, Jerusalem May 21 2015. Michel Talagrand Gregory Margulis Property testing In this post I will tell you about a new paper by Subhash Khot, Dor Minzer and Muli Safra entitled: On … Continue reading

## Two Delightful Major Simplifications

Arguably mathematics is getting harder, although some people claim that also in the old times parts of it were hard and known only to a few experts before major simplifications had changed matters. Let me report here about two recent remarkable simplifications … Continue reading

## The Simplex, the Cyclic polytope, the Positroidron, the Amplituhedron, and Beyond

A quick schematic road-map to these new geometric objects. The positroidron can be seen as a cellular structure on the nonnegative Grassmanian – the part of the real Grassmanian G(m,n) which corresponds to m by n matrices with all m by … Continue reading

## From Oberwolfach: The Topological Tverberg Conjecture is False

The topological Tverberg conjecture (discussed in this post), a holy grail of topological combinatorics, was refuted! The three-page paper “Counterexamples to the topological Tverberg conjecture” by Florian Frick gives a brilliant proof that the conjecture is false. The proof is … Continue reading

Posted in Combinatorics, Conferences, Convexity, Updates
Tagged Florian Frick, Issac Mabillard, Uli Wagner
2 Comments

## Midrasha Mathematicae #18: In And Around Combinatorics

Tahl Nowik Update 3 (January 30): The midrasha ended today. Update 2 (January 28): additional videos are linked; Update 1 (January 23): Today we end the first week of the school. David Streurer and Peter Keevash completed … Continue reading

Posted in Combinatorics, Conferences, Updates
1 Comment

## When Do a Few Colors Suffice?

When can we properly color the vertices of a graph with a few colors? This is a notoriously difficult problem. Things get a little better if we consider simultaneously a graph together with all its induced subgraphs. Recall that an … Continue reading

## Coloring Simple Polytopes and Triangulations

Coloring Edge-coloring of simple polytopes One of the equivalent formulation of the four-color theorem asserts that: Theorem (4CT) : Every cubic bridgeless planar graph is 3-edge colorable So we can color the edges by three colors such that every two … Continue reading

## A lecture by Noga

Noga with Uri Feige among various other heroes A few weeks ago I devoted a post to the 240-summit conference for Péter Frankl, Zoltán Füredi, Ervin Győri and János Pach, and today I will bring you the slides of Noga … Continue reading

Posted in Combinatorics, Conferences
Tagged Ankur Moitra, Benny Sudakov, Ervin Győri, János Pach, Noga Alon, Peter Frankl, Zoltán Füredi
Leave a comment