### Recent Comments

Gil Kalai on Polymath10, Post 2: Homologica… Philip Gibbs on Polymath10, Post 2: Homologica… Philip Gibbs on Polymath10, Post 2: Homologica… Philip Gibbs on Polymath10, Post 2: Homologica… Philip Gibbs on Polymath10, Post 2: Homologica… Philip Gibbs on Polymath10, Post 2: Homologica… gowers on Polymath10, Post 2: Homologica… gowers on Polymath10, Post 2: Homologica… gowers on Polymath10, Post 2: Homologica… Gil Kalai on Polymath10, Post 2: Homologica… Gil Kalai on Two Very Early Problems, a Sim… Ben Wieland on Two Very Early Problems, a Sim… -
### Recent Posts

- Polymath10, Post 2: Homological Approach
- Polymath10: The Erdos Rado Delta System Conjecture
- Convex Polytopes: Seperation, Expansion, Chordality, and Approximations of Smooth Bodies
- Igor Pak’s collection of combinatorics videos
- EDP Reflections and Celebrations
- Séminaire N. Bourbaki – Designs Exist (after Peter Keevash) – the paper
- Important formulas in Combinatorics
- Updates and plans III.
- NogaFest, NogaFormulas, and Amazing Cash Prizes

### Top Posts & Pages

- The Kadison-Singer Conjecture has beed Proved by Adam Marcus, Dan Spielman, and Nikhil Srivastava
- Polymath10, Post 2: Homological Approach
- Polymath10: The Erdos Rado Delta System Conjecture
- Why is Mathematics Possible: Tim Gowers's Take on the Matter
- New Ramanujan Graphs!
- Believing that the Earth is Round When it Matters
- Why Quantum Computers Cannot Work: The Movie!
- About
- 'Gina Says'

### RSS

# Category Archives: Combinatorics

## Jim Geelen, Bert Gerards, and Geoﬀ Whittle Solved Rota’s Conjecture on Matroids

Gian Carlo Rota Rota’s conjecture I just saw in the Notices of the AMS a paper by Geelen, Gerards, and Whittle where they announce and give a high level description of their recent proof of Rota’s conjecture. The 1970 conjecture asserts … Continue reading

Posted in Combinatorics, Open problems, Updates
Tagged Bert Gerards, Eric Katz, Geoﬀ Whittle, Gian Carlo Rota, Jim Geelen, June Huh, Matroids
7 Comments

## My Mathematical Dialogue with Jürgen Eckhoff

Jürgen Eckhoff, Ascona 1999 Jürgen Eckhoff is a German mathematician working in the areas of convexity and combinatorics. Our mathematical paths have met a remarkable number of times. We also met quite a few times in person since our first … Continue reading

Posted in Combinatorics, Convex polytopes, Open problems
Tagged Andy Frohmader, Helly's theorem, Jurgen Eckhoff, Nina Amenta, Noga Alon, Roy Meshulam
1 Comment

## Happy Birthday Richard Stanley!

This week we are celebrating in Cambridge MA , and elsewhere in the world, Richard Stanley’s birthday. For the last forty years, Richard has been one of the very few leading mathematicians in the area of combinatorics, and he found deep, profound, and … Continue reading

## Influence, Threshold, and Noise

My dear friend Itai Benjamini told me that he won’t be able to make it to my Tuesday talk on influence, threshold, and noise, and asked if I already have the slides. So it occurred to me that perhaps … Continue reading

## Levon Khachatrian’s Memorial Conference in Yerevan

Workshop announcement The National Academy of Sciences of Armenia together American University of Armenia are organizing a memorial workshop on extremal combinatorics, cryptography and coding theory dedicated to the 60th anniversary of the mathematician Levon Khachatrian. Professor Khachatrian started his … Continue reading

## Amazing: Peter Keevash Constructed General Steiner Systems and Designs

Here is one of the central and oldest problems in combinatorics: Problem: Can you find a collection S of q-subsets from an n-element set X set so that every r-subset of X is included in precisely λ sets in the collection? … Continue reading

## Many triangulated three-spheres!

The news Eran Nevo and Stedman Wilson have constructed triangulations with n vertices of the 3-dimensional sphere! This settled an old problem which stood open for several decades. Here is a link to their paper How many n-vertex triangulations does the 3 … Continue reading

Posted in Combinatorics, Convex polytopes, Geometry, Open problems
Tagged Eran Nevo, Stedman Wilson
Leave a comment

## NatiFest is Coming

The conference Poster as designed by Rotem Linial A conference celebrating Nati Linial’s 60th birthday will take place in Jerusalem December 16-18. Here is the conference’s web-page. To celebrate the event, I will reblog my very early 2008 post “Nati’s … Continue reading

Posted in Combinatorics, Computer Science and Optimization, Conferences, Updates
Tagged Nati Linial
2 Comments

## Analysis of Boolean Functions – Week 7

Lecture 11 The Cap Set problem We presented Meshulam’s bound for the maximum number of elements in a subset A of not containing a triple x,y,x of distinct elements whose sum is 0. The theorem is analogous to Roth’s theorem … Continue reading

Posted in Combinatorics, Computer Science and Optimization, Teaching
Tagged Cap set problem, Codes, Linearity testing
Leave a comment