### Recent Comments

Gil Kalai on זה הזמן לשינוי Yiftach on זה הזמן לשינוי Gil Kalai on זה הזמן לשינוי Yiftach on זה הזמן לשינוי Gil Kalai on זה הזמן לשינוי קוסמופוליט on זה הזמן לשינוי Gil Kalai on זה הזמן לשינוי Eli_B on זה הזמן לשינוי Michael Elkin on זה הזמן לשינוי Gil Kalai on זה הזמן לשינוי Eli_B on זה הזמן לשינוי Gil Kalai on זה הזמן לשינוי -
### Recent Posts

- בחירות 2015 – בוא נבחר באביב
- זה הזמן לשינוי
- Combinatorics and More – Greatest Hits
- Ilan and me
- The Simplex, the Cyclic polytope, the Positroidron, the Amplituhedron, and Beyond
- From Oberwolfach: The Topological Tverberg Conjecture is False
- Midrasha Mathematicae #18: In And Around Combinatorics
- Quantum computing: achievable reality or unrealistic dream
- A Historical Picture Taken by Nimrod Megiddo

### Top Posts & Pages

- בחירות 2015 - בוא נבחר באביב
- זה הזמן לשינוי
- Believing that the Earth is Round When it Matters
- The Simplex, the Cyclic polytope, the Positroidron, the Amplituhedron, and Beyond
- The Kadison-Singer Conjecture has beed Proved by Adam Marcus, Dan Spielman, and Nikhil Srivastava
- Quantum computing: achievable reality or unrealistic dream
- When It Rains It Pours
- Midrasha Mathematicae #18: In And Around Combinatorics
- Answer: Lord Kelvin, The Age of the Earth, and the Age of the Sun

### RSS

# Category Archives: Computer Science and Optimization

## A Few Slides and a Few Comments From My MIT Lecture on Quantum Computers

I gathered a few of the comments made by participants of my lecture “Why quantum computers cannot work and how”, and a few of my answers. Here they are along with some of the lecture’s slides. Here is the link … Continue reading

## Meeting with Aram Harrow, and my Lecture on Why Quantum Computers Cannot Work.

Last Friday, I gave a lecture at the quantum information seminar at MIT entitled “Why quantum computers cannot work and how.” It was a nice event with lovely participation during the talk, and a continued discussion after it. Many very … Continue reading

## Ann Lehman’s Sculpture Based on Herb Scarf’s Maximal Lattice Free Convex Bodies

Maximal lattice-free convex bodies introduced by Herb Scarf and the related complex of maximal lattice free simplices (also known as the Scarf complex) are remarkable geometric constructions with deep connections to combinatorics, convex geometry, integer programming, game theory, fixed point computations, … Continue reading

Posted in Art, Computer Science and Optimization, Economics, Games
Tagged Ann Lehman, Herb Scarf
3 Comments

## Symplectic Geometry, Quantization, and Quantum Noise

Over the last two meetings of our HU quantum computation seminar we heard two talks about symplectic geometry and its relations to quantum mechanics and quantum noise. Yael Karshon: Manifolds, symplectic manifolds, Newtonian mechanics, quantization, and the non squeezing theorem. … Continue reading

## Lionel Pournin found a combinatorial proof for Sleator-Tarjan-Thurston diameter result

I just saw in Claire Mathieu’s blog “A CS professor blog” that a simple proof of the Sleator-Tarjan-Thurston’s diameter result for the graph of the associahedron was found by Lionel Pournin! Here are slides of his lecture “The diameters of associahedra” … Continue reading

Posted in Combinatorics, Computer Science and Optimization, Convex polytopes
Tagged Associahedron, Lionel Pournin
1 Comment

## The Quantum Debate is Over! (and other Updates)

Quid est noster computationis mundus? Nine months after is started, (much longer than expected,) and after eight posts on GLL, (much more than planned,) and almost a thousand comments of overall good quality, from quite a few participants, my … Continue reading

## The Quantum Fault-Tolerance Debate Updates

In a couple of days, we will resume the debate between Aram Harrow and me regarding the possibility of universal quantum computers and quantum fault tolerance. The debate takes place over GLL (Godel’s Lost Letter and P=NP) blog. The Debate Where were … Continue reading

## Greg Kuperberg: It is in NP to Tell if a Knot is Knotted! (under GRH!)

Wolfgang Haken found an algorithm to tell if a knot is trivial, and, more generally with Hemion, if two knots are equivalent. Joel Hass, Jeff Lagarias and Nick Pippinger proved in 1999 that telling that a knot is unknotted is … Continue reading

## Updates, Boolean Functions Conference, and a Surprising Application to Polytope Theory

The Debate continues The debate between Aram Harrow and me on Godel Lost letter and P=NP (GLL) regarding quantum fault tolerance continues. The first post entitled Perpetual motions of the 21th century featured mainly my work, with a short response by Aram. … Continue reading

## A Discussion and a Debate

Heavier than air flight of the 21 century? The very first post on this blog entitled “Combinatorics, Mathematics, Academics, Polemics, …” asked the question “Are mathematical debates possible?” We also had posts devoted to debates and to controversies. A few days ago, … Continue reading