Category Archives: Convex polytopes

Tomorrow: Boolean functions day at the TAU theory fest

As part of the 2019/2020 TAU theory fest, tomorrow, Friday, January 3, 2020,  is a Boolean function day at Tel Aviv University. The five speakers are Esty Kelman, Noam Lifschitz, Renan Gross, Ohad Klein, and Naomi Kirshner. For more (and … Continue reading

Posted in Combinatorics, Conferences, Convex polytopes | Tagged , , , , , , , | Leave a comment

Danny Nguyen and Igor Pak: Presburger Arithmetic Problem Solved!

Short Presburger arithmetic is hard! This is a belated report on a remarkable breakthrough from 2017. The paper is Short Presburger arithmetic is hard, by Nguyen and Pak. Danny Nguyen Integer programming in bounded dimension: Lenstra’s Theorem Algorithmic tasks are … Continue reading

Posted in Combinatorics, Computer Science and Optimization, Convex polytopes | Tagged , , , , , , , , | 2 Comments

Karim Adiprasito: The g-Conjecture for Vertex Decomposible Spheres

J Scott Provan (site) The following post was kindly contributed by Karim Adiprasito. (Here is the link to Karim’s paper.) Update: See Karim’s comment on the needed ideas for extend the proof to the general case. See also  in the … Continue reading

Posted in Combinatorics, Convex polytopes, Geometry, Guest blogger | Tagged , , , , | 9 Comments

Beyond the g-conjecture – algebraic combinatorics of cellular spaces I

The g-conjecture for spheres is surely the one single conjecture I worked on more than on any other, and also here on the blog we had a sequence of posts about it by Eran Nevo (I,II,III,IV). Here is a great … Continue reading

Posted in Combinatorics, Convex polytopes, Geometry | Tagged , , , , , , , , , , , , , , , , , , | 10 Comments

A Mysterious Duality Relation for 4-dimensional Polytopes.

Two dimensions Before we talk about 4 dimensions let us recall some basic facts about 2 dimensions: A planar polygon has the same number of vertices and edges. This fact, which just asserts that the Euler characteristic of is zero, … Continue reading

Posted in Combinatorics, Convex polytopes | Tagged | 5 Comments

My Copy of Branko Grünbaum’s Convex Polytopes

Branko Grünbaum is my academic grandfather (see this highly entertaining post for a picture representing five academic generations). Gunter Ziegler just wrote a beautiful article in the Notices of the AMS on Branko Grunbaum’s  classic book “Convex Polytopes”, so this … Continue reading

Posted in Combinatorics, Convex polytopes, People | Tagged , , | 4 Comments

Eran Nevo: g-conjecture part 4, Generalizations and Special Cases

This is the fourth in a series of posts by Eran Nevo on the g-conjecture. Eran’s first post was devoted to the combinatorics of the g-conjecture and was followed by a further post by me on the origin of the g-conjecture. Eran’s second post was about … Continue reading

Posted in Combinatorics, Convex polytopes, Guest blogger, Open problems | Tagged , | 2 Comments

Touching Simplices and Polytopes: Perles’ argument

Joseph Zaks (1984), picture taken by Ludwig Danzer (OberWolfach photo collection)   The story I am going to tell here was told in several places, but it might be new to some readers and I will mention my own angle, … Continue reading

Posted in Combinatorics, Convex polytopes, Geometry, Open problems | Tagged , | Leave a comment

Convex Polytopes: Seperation, Expansion, Chordality, and Approximations of Smooth Bodies

I am happy to report on two beautiful results on convex polytopes. One disproves an old conjecture of mine and one proves an old conjecture of mine. Loiskekoski and Ziegler: Simple polytopes without small separators. Does Lipton-Tarjan’s theorem extends to high … Continue reading

Posted in Combinatorics, Convex polytopes | Tagged , , , , , | 3 Comments

The Simplex, the Cyclic polytope, the Positroidron, the Amplituhedron, and Beyond

A quick schematic road-map to these new geometric objects. The  positroidron can be seen as a cellular structure on the nonnegative Grassmanian – the part of the real Grassmanian G(m,n) which corresponds to m by n matrices with all m by … Continue reading

Posted in Algebra, Combinatorics, Convex polytopes, Physics | Tagged , , , , , , | 16 Comments