Recent Comments

Recent Posts
 If Quantum Computers are not Possible Why are Classical Computers Possible?
 Sergiu Hart: TwoVote or not to Vote
 A toast to Alistair: Two Minutes on Two Great Professional Surprises
 TYI 31 – Rados Radoicic’s Rope Problem
 Eran Nevo: gconjecture part 4, Generalizations and Special Cases
 The World of Michael Burt: When Architecture, Mathematics, and Art meet.
 Layish
 Some Mathematical Puzzles that I encountered during my career
 Friendship and Sesame, Maryam and Marina, Israel and Iran
Top Posts & Pages
 If Quantum Computers are not Possible Why are Classical Computers Possible?
 Elchanan Mossel's Amazing Dice Paradox (your answers to TYI 30)
 Sergiu Hart: TwoVote or not to Vote
 TYI 30: Expected number of Dice throws
 Answer: Lord Kelvin, The Age of the Earth, and the Age of the Sun
 The Race to Quantum Technologies and Quantum Computers (Useful Links)
 Friendship and Sesame, Maryam and Marina, Israel and Iran
 A Breakthrough by Maryna Viazovska Leading to the Long Awaited Solutions for the Densest Packing Problem in Dimensions 8 and 24
 Believing that the Earth is Round When it Matters
RSS
Category Archives: Convex polytopes
Ziegler´s Lecture on the Associahedron
The associahedron in 3 dimension, and James Stasheff. This picture is taken from Bill Casselman’s article on the associahedron. The article is entitled “Strange Associations” and starts with “There are many other polytopes that can be described in purely combinatorial terms. Among the … Continue reading
Posted in Convex polytopes
Tagged Associahedron, Cyclohedron, Permutahedron, Permutoassociahedron
7 Comments
Telling a Simple Polytope From its Graph
Peter Mani (a photograph by Emo Welzl) Simple polytopes, puzzles Micha A. Perles conjectured in the ’70s that the graph of a simple polytope determines the entire combinatorial structure of the polytope. This conjecture was proved in 1987 by Blind … Continue reading
Posted in Convex polytopes, Open problems
Tagged Eric Friedman, Peter Mani, Roswitta Blind
5 Comments
A Diameter problem (7): The Best Known Bound
Our Diameter problem for families of sets Consider a family of subsets of size d of the set N={1,2,…,n}. Associate to a graph as follows: The vertices of are simply the sets in . Two vertices and are adjacent if . … Continue reading
A Diameter Problem (6): Abstract Objective Functions
George Dantzig and Leonid Khachyan In this part we will not progress on the diameter problem that we discussed in the earlier posts but will rather describe a closely related problem for directed graphs associated with ordered families of sets. The role models for … Continue reading
Posted in Combinatorics, Convex polytopes, Open problems
Tagged Hirsch conjecture, Linear programming
7 Comments
A Diameter Problem (5)
6. First subexponential bounds. Proposition 1: How to prove it: This is easy to prove: Given two sets and in our family , we first find a path of the form where, and . We let with and consider the family … Continue reading
Diameter Problem (4)
Let us consider another strategy to deal with our diameter problem. Let us try to associate other graphs to our family of sets. Recall that we consider a family of subsets of size of the set . Let us now associate … Continue reading
Diameter Problem (3)
3. What we will do in this post and and in future posts We will now try all sorts of ideas to give good upper bounds for the abstract diameter problem that we described. As we explained, such bounds apply … Continue reading
Posted in Combinatorics, Convex polytopes, Open problems
Tagged Hirsch conjecture, Linear programming, Quasiautomated proofs
1 Comment
A Diameter Problem (2)
2. The connection with Hirsch’s Conjecture The Hirsch Conjecture asserts that the diameter of the graph G(P) of a dpolytope P with n facets is at most nd. Not even a polynomial upper bound for the diameter in terms of d and … Continue reading
Posted in Combinatorics, Convex polytopes, Open problems
5 Comments
A Diamater Problem for Families of Sets.
Let me draw your attention to the following problem: Consider a family of subsets of size d of the set N={1,2,…,n}. Associate to a graph as follows: The vertices of are simply the sets in . Two vertices and are adjacent … Continue reading
Posted in Combinatorics, Convex polytopes, Open problems
10 Comments
Euler’s Formula, Fibonacci, the BayerBillera Theorem, and Fine’s CDindex
Bill Gessley proving Euler’s formula (at UMKC) In the earlier post about Billerafest I mentioned the theorem of Bayer and Billera on flag numbers of polytopes. Let me say a little more about it. 1. Euler Euler’s theorem … Continue reading
Posted in Combinatorics, Convex polytopes
Tagged BayerBillera's theorem, CDindex, Flag numbers
4 Comments