Category Archives: Geometry

The Erdős Szekeres polygon problem – Solved asymptotically by Andrew Suk.

Here is the abstract of a recent paper by Andrew Suk. (I heard about it from a Facebook post by Yufei Zhao. I added a link to the original Erdős Szekeres’s paper.) Let ES(n) be the smallest integer such that … Continue reading

Posted in Combinatorics, Geometry, Updates | Tagged | Leave a comment

Three Conferences: Joel Spencer, April 29-30, Courant; Joel Hass May 20-22, Berkeley, Jean Bourgain May 21-24, IAS, Princeton

Dear all, I would like to advertise three  promising-to-be wonderful mathematical conferences in the very near future. Quick TYI. See if you can guess the title and speaker for  a lecture described by  “where the mathematics of Cauchy, Fourier, Sobolev, … Continue reading

Posted in Analysis, Combinatorics, Conferences, Geometry, Updates | Tagged , , | Leave a comment

A Breakthrough by Maryna Viazovska Leading to the Long Awaited Solutions for the Densest Packing Problem in Dimensions 8 and 24

Maryna Viazovska The news Maryna Viazovska has solved the densest packing problem in dimension eight! Subsequently, Maryna Viazovska with Henry Cohn, Steve Miller, Abhinav Kumar, and Danilo Radchenko solved the densest packing problem in 24 dimensions! Here are the links to … Continue reading

Posted in Combinatorics, Geometry, Updates | Tagged , , , , , , | 15 Comments

Next Week in Jerusalem: Special Day on Quantum PCP, Quantum Codes, Simplicial Complexes and Locally Testable Codes

Special Quantum PCP and/or Quantum Codes: Simplicial Complexes and Locally Testable CodesDay בי”ס להנדסה ולמדעי המחשב 24 Jul 2014 – 09:30 to 17:00 room B-220, 2nd floor, Rothberg B Building On Thursday, the 24th of July we will host a SC-LTC (simplicial complexes … Continue reading

Posted in Combinatorics, Computer Science and Optimization, Conferences, Geometry, Quantum | Tagged , , , , , , , , , | Leave a comment

Many triangulated three-spheres!

The news Eran Nevo and Stedman Wilson have constructed triangulations with n vertices of the 3-dimensional sphere! This settled an old problem which stood open for several decades. Here is a link to their paper How many n-vertex triangulations does the 3 … Continue reading

Posted in Combinatorics, Convex polytopes, Geometry, Open problems | Tagged , | Leave a comment

Around Borsuk’s Conjecture 3: How to Save Borsuk’s conjecture

Borsuk asked in 1933 if every bounded set K of diameter 1 in can be covered by d+1 sets of smaller diameter. A positive answer was referred to as the “Borsuk Conjecture,” and it was disproved by Jeff Kahn and me in 1993. … Continue reading

Posted in Combinatorics, Convexity, Geometry, Open problems | Tagged , , , | Leave a comment

Some old and new problems in combinatorics and geometry

Paul Erdős in Jerusalem, 1933  1993 Update: Here is a link to a draft of a paper* based on the first part of this lecture. Some old and new problems in combinatorial geometry I: Around Borsuk’s problem. I just came back from … Continue reading

Posted in Combinatorics, Geometry, Open problems | Tagged | 4 Comments

Andriy Bondarenko Showed that Borsuk’s Conjecture is False for Dimensions Greater Than 65!

The news in brief Andriy V. Bondarenko proved in his remarkable paper The Borsuk Conjecture for two-distance sets  that the Borsuk’s conjecture is false for all dimensions greater than 65. This is a substantial improvement of the earlier record (all dimensions … Continue reading

Posted in Combinatorics, Geometry, Open problems | Tagged , , , , | 2 Comments

F ≤ 4E

1. E ≤ 3V Let G be a simple planar graph with V vertices and E edges. It follows from Euler’s theorem that E ≤ 3V In fact, we have (when V is at least 3,) that E ≤ 3V – 6. … Continue reading

Posted in Combinatorics, Convex polytopes, Geometry, Open problems | Tagged | 12 Comments

Symplectic Geometry, Quantization, and Quantum Noise

Over the last two meetings of our HU quantum computation seminar we heard two talks about symplectic geometry and its relations to quantum mechanics and quantum noise. Yael Karshon: Manifolds, symplectic manifolds, Newtonian mechanics, quantization, and the non squeezing theorem. … Continue reading

Posted in Computer Science and Optimization, Geometry, Physics | Tagged , , , , , , | 6 Comments