Recent Comments

Recent Posts
 Polymath10, Post 2: Homological Approach
 Polymath10: The Erdos Rado Delta System Conjecture
 Convex Polytopes: Seperation, Expansion, Chordality, and Approximations of Smooth Bodies
 Igor Pak’s collection of combinatorics videos
 EDP Reflections and Celebrations
 Séminaire N. Bourbaki – Designs Exist (after Peter Keevash) – the paper
 Important formulas in Combinatorics
 Updates and plans III.
 NogaFest, NogaFormulas, and Amazing Cash Prizes
Top Posts & Pages
 The KadisonSinger Conjecture has beed Proved by Adam Marcus, Dan Spielman, and Nikhil Srivastava
 Polymath10, Post 2: Homological Approach
 Polymath10: The Erdos Rado Delta System Conjecture
 Four Derandomization Problems
 Believing that the Earth is Round When it Matters
 Updates and plans III.
 NogaFest, NogaFormulas, and Amazing Cash Prizes
 Why is Mathematics Possible: Tim Gowers's Take on the Matter
 'Gina Says'
RSS
Category Archives: Geometry
Polymath3 (PHC6): The Polynomial Hirsch Conjecture – A Topological Approach
This is a new polymath3 research thread. Our aim is to tackle the polynomial Hirsch conjecture which asserts that there is a polynomial upper bound for the diameter of graphs of dimensional polytopes with facets. Our research so far was … Continue reading
Posted in Convex polytopes, Geometry, Polymath3
Tagged Hirsch conjecture, Polymath3, Topological combinatorics
37 Comments
János Pach: Guth and Katz’s Solution of Erdős’s Distinct Distances Problem
Click here for the most recent polymath3 research thread. Erdős and Pach celebrating another November day many years ago. The Wolf disguised as Little Red Riding Hood. Pach disguised as another Pach. This post is authored by János Pach A … Continue reading
Posted in Combinatorics, Geometry, Guest blogger, Open problems
Tagged Larry Guth, Nets Hawk Katz
13 Comments
Benoît’s Fractals
Mandelbrot set Benoît Mandelbrot passed away a few dayes ago on October 14, 2010. Since 1987, Mandelbrot was a member of the Yale’s mathematics department. This chapterette from my book “Gina says: Adventures in the Blogosphere String War” about fractals is brought here on this … Continue reading
Posted in Geometry, Obituary, Physics, Probability
6 Comments
Answer to Test Your Intuition (3)
Question: Let be the dimensional cube. Turn into a torus by identifying opposite facets. What is the minumum dimensional volume of a subset of which intersects every nontrivial cycle in . Answer: Taking to be all points in the solid … Continue reading
Test Your Intuition (3)
Let be the dimensional cube. Turn into a torus by identifying opposite facets. What is the minumum dimensional volume of a subset of which intersects every nontrivial cycle in .