Recent Comments

Recent Posts
 Polymath 10 post 6: The ErdosRado sunflower conjecture, and the Turan (4,3) problem: homological approaches.
 Polymath 10 Emergency Post 5: The ErdosSzemeredi Sunflower Conjecture is Now Proven.
 Mind Boggling: Following the work of Croot, Lev, and Pach, Jordan Ellenberg settled the cap set problem!
 More Math from Facebook
 The Erdős Szekeres polygon problem – Solved asymptotically by Andrew Suk.
 The Quantum Computer Puzzle @ Notices of the AMS
 Three Conferences: Joel Spencer, April 2930, Courant; Joel Hass May 2022, Berkeley, Jean Bourgain May 2124, IAS, Princeton
 Math and Physics Activities at HUJI
 Stefan Steinerberger: The Ulam Sequence
Top Posts & Pages
 Polymath 10 Emergency Post 5: The ErdosSzemeredi Sunflower Conjecture is Now Proven.
 Mind Boggling: Following the work of Croot, Lev, and Pach, Jordan Ellenberg settled the cap set problem!
 The KadisonSinger Conjecture has beed Proved by Adam Marcus, Dan Spielman, and Nikhil Srivastava
 Polymath 10 post 6: The ErdosRado sunflower conjecture, and the Turan (4,3) problem: homological approaches.
 A Breakthrough by Maryna Viazovska Leading to the Long Awaited Solutions for the Densest Packing Problem in Dimensions 8 and 24
 Believing that the Earth is Round When it Matters
 Answer: Lord Kelvin, The Age of the Earth, and the Age of the Sun
 Telling a Simple Polytope From its Graph
 The Erdős Szekeres polygon problem  Solved asymptotically by Andrew Suk.
RSS
Category Archives: Open problems
Polymath 10 post 6: The ErdosRado sunflower conjecture, and the Turan (4,3) problem: homological approaches.
In earlier posts I proposed a homological approach to the ErdosRado sunflower conjecture. I will describe again this approach in the second part of this post. Of course, discussion of other avenues for the study of the conjecture are welcome. The purpose … Continue reading
Mind Boggling: Following the work of Croot, Lev, and Pach, Jordan Ellenberg settled the cap set problem!
A quote from a recent post from Jordan Ellenberg‘s blog Quomodocumque: Briefly: it seems to me that the idea of the CrootLevPach paper I posted about yesterday (GK: see also my last post) can indeed be used to give a new bound … Continue reading
Posted in Combinatorics, Open problems, Updates
Tagged Cap sets, Dion Gijswijt, Ernie Croot, Jordan Ellenberg, Peter Pach, Seva Lev.
18 Comments
Stefan Steinerberger: The Ulam Sequence
This post is authored by Stefan Steinerberger. The Ulam sequence is defined by starting with 1,2 and then repeatedly adding the smallest integer that is (1) larger than the last element and (2) can be written as the sum of two … Continue reading
Polymath 10 Post 3: How are we doing?
The main purpose of this post is to start a new research thread for Polymath 10 dealing with the ErdosRado Sunflower problem. (Here are links to post 2 and post 1.) Here is a very quick review of where we … Continue reading
Posted in Combinatorics, Mathematics over the Internet, Open problems, Polymath10
Tagged polymath10, sunflower conjecture
103 Comments
More Reasons for Small Influence
Readers of the bigleague ToC blogs have already heard about the breakthrough paper An averagecase depth hierarchy theorem for Boolean circuits by Benjamin Rossman, Rocco Servedio, and LiYang Tan. Here are blog reports on Computational complexity, on the Shtetl Optimized, and of Godel … Continue reading
Coloring Simple Polytopes and Triangulations
Coloring Edgecoloring of simple polytopes One of the equivalent formulation of the fourcolor theorem asserts that: Theorem (4CT) : Every cubic bridgeless planar graph is 3edge colorable So we can color the edges by three colors such that every two … Continue reading
Jim Geelen, Bert Gerards, and Geoﬀ Whittle Solved Rota’s Conjecture on Matroids
Gian Carlo Rota Rota’s conjecture I just saw in the Notices of the AMS a paper by Geelen, Gerards, and Whittle where they announce and give a high level description of their recent proof of Rota’s conjecture. The 1970 conjecture asserts … Continue reading
Posted in Combinatorics, Open problems, Updates
Tagged Bert Gerards, Eric Katz, Geoﬀ Whittle, Gian Carlo Rota, Jim Geelen, June Huh, Matroids
7 Comments
My Mathematical Dialogue with Jürgen Eckhoff
Jürgen Eckhoff, Ascona 1999 Jürgen Eckhoff is a German mathematician working in the areas of convexity and combinatorics. Our mathematical paths have met a remarkable number of times. We also met quite a few times in person since our first … Continue reading
Posted in Combinatorics, Convex polytopes, Open problems
Tagged Andy Frohmader, Helly's theorem, Jurgen Eckhoff, Nina Amenta, Noga Alon, Roy Meshulam
1 Comment
NavierStokes Fluid Computers
Smart fluid Terry Tao posted a very intriguing post on the NavierStokes equation, based on a recently uploaded paper Finite time blowup for an averaged threedimensional NavierStokes equation. The paper proved a remarkable negative answer for the regularity conjecture for a certain … Continue reading
Amazing: Peter Keevash Constructed General Steiner Systems and Designs
Here is one of the central and oldest problems in combinatorics: Problem: Can you find a collection S of qsubsets from an nelement set X set so that every rsubset of X is included in precisely λ sets in the collection? … Continue reading