Category Archives: Open problems

R(5,5) ≤ 48

The Ramsey numbers R(s,t) The Ramsey number R(s, t) is defined to be the smallest n such that every graph of order n contains either a clique of s vertices or an independent set of t vertices. Understanding the values … Continue reading

Posted in Combinatorics, Open problems, Updates | Tagged , | Leave a comment

Test Your Intuition (27) about the Alon-Tarsi Conjecture

On the occasion of Polymath 12 devoted to the Rota basis conjecture let me remind you about the Alon-Tarsi conjecture and test your intuition concerning a strong form of the conjecture. The sign of a Latin square is the product … Continue reading

Posted in Combinatorics, Open problems, Test your intuition | Tagged , | Leave a comment

Polymath10 conclusion

The Polymath10 project on the Erdos-Rado Delta-System conjecture took place over this blog from November 2015 to May 2016. I aimed for an easy-going project that people could participate calmly aside from their main research efforts and  the duration of … Continue reading

Posted in Combinatorics, Open problems, Polymath10 | Tagged , | 4 Comments

Polymath 10 post 6: The Erdos-Rado sunflower conjecture, and the Turan (4,3) problem: homological approaches.

In earlier posts I proposed a homological approach to the Erdos-Rado sunflower conjecture.  I will describe again this approach in the second part of this post. Of course, discussion of other avenues for the study of the conjecture are welcome. The purpose … Continue reading

Posted in Combinatorics, Mathematics over the Internet, Open problems, Polymath10 | Tagged , | 6 Comments

Mind Boggling: Following the work of Croot, Lev, and Pach, Jordan Ellenberg settled the cap set problem!

A quote from a recent post from Jordan Ellenberg‘s blog Quomodocumque: Briefly:  it seems to me that the idea of the Croot-Lev-Pach paper I posted about yesterday (GK: see also my last post) can indeed be used to give a new bound … Continue reading

Posted in Combinatorics, Open problems, Updates | Tagged , , , , , | 20 Comments

Stefan Steinerberger: The Ulam Sequence

This post is authored by Stefan Steinerberger. The Ulam sequence is defined by starting with 1,2 and then repeatedly adding the smallest integer that is (1) larger than the last element and (2) can be written as the sum of two … Continue reading

Posted in Guest blogger, Open problems | Tagged , | 8 Comments

Polymath 10 Post 3: How are we doing?

The main purpose of this post is to start a new research thread for Polymath 10  dealing with the Erdos-Rado Sunflower problem.  (Here are links to post 2 and post 1.) Here is a  very quick review of where we … Continue reading

Posted in Combinatorics, Mathematics over the Internet, Open problems, Polymath10 | Tagged , | 104 Comments

More Reasons for Small Influence

Readers of the big-league ToC blogs have already heard about the breakthrough paper An average-case depth hierarchy theorem for Boolean circuits by Benjamin Rossman, Rocco Servedio, and Li-Yang Tan. Here are blog reports on Computational complexity, on the Shtetl Optimized, and of Godel … Continue reading

Posted in Combinatorics, Computer Science and Optimization, Open problems, Probability | 12 Comments

Coloring Simple Polytopes and Triangulations

Coloring Edge-coloring of simple polytopes One of the equivalent formulation of the four-color theorem asserts that: Theorem (4CT) : Every cubic bridgeless planar graph is 3-edge colorable So we can color the edges by three colors such that every two … Continue reading

Posted in Combinatorics, Open problems | Tagged , | 10 Comments

Jim Geelen, Bert Gerards, and Geoff Whittle Solved Rota’s Conjecture on Matroids

Gian Carlo Rota Rota’s conjecture I just saw in the Notices of the AMS a paper by Geelen, Gerards, and Whittle where they announce and give a high level description of their recent proof of Rota’s conjecture. The 1970 conjecture asserts … Continue reading

Posted in Combinatorics, Open problems, Updates | Tagged , , , , , , | 7 Comments