### Recent Comments

domotorp on Polymath10, Post 2: Homologica… Philip Gibbs on Polymath10, Post 2: Homologica… Thanks for Additivit… on The Kadison-Singer Conjecture… domotorp on Polymath10, Post 2: Homologica… Philip Gibbs on Polymath10, Post 2: Homologica… domotorp on Polymath10, Post 2: Homologica… Philip Gibbs on Polymath10, Post 2: Homologica… Philip Gibbs on Polymath10, Post 2: Homologica… Philip Gibbs on Polymath10, Post 2: Homologica… Philip Gibbs on Polymath10, Post 2: Homologica… Gil Kalai on Polymath10, Post 2: Homologica… Philip Gibbs on Polymath10, Post 2: Homologica… -
### Recent Posts

- Polymath10, Post 2: Homological Approach
- Polymath10: The Erdos Rado Delta System Conjecture
- Convex Polytopes: Seperation, Expansion, Chordality, and Approximations of Smooth Bodies
- Igor Pak’s collection of combinatorics videos
- EDP Reflections and Celebrations
- Séminaire N. Bourbaki – Designs Exist (after Peter Keevash) – the paper
- Important formulas in Combinatorics
- Updates and plans III.
- NogaFest, NogaFormulas, and Amazing Cash Prizes

### Top Posts & Pages

- The Kadison-Singer Conjecture has beed Proved by Adam Marcus, Dan Spielman, and Nikhil Srivastava
- Polymath10, Post 2: Homological Approach
- Polymath10: The Erdos Rado Delta System Conjecture
- Analysis of Boolean Functions
- Greatest Hits
- New Ramanujan Graphs!
- יופיה של המתמטיקה
- Can Category Theory Serve as the Foundation of Mathematics?
- 'Gina Says'

### RSS

# Category Archives: Open problems

## Some old and new problems in combinatorics and geometry

Paul Erdős in Jerusalem, 1933 1993 Update: Here is a link to a draft of a paper* based on the first part of this lecture. Some old and new problems in combinatorial geometry I: Around Borsuk’s problem. I just came back from … Continue reading

## Andriy Bondarenko Showed that Borsuk’s Conjecture is False for Dimensions Greater Than 65!

The news in brief Andriy V. Bondarenko proved in his remarkable paper The Borsuk Conjecture for two-distance sets that the Borsuk’s conjecture is false for all dimensions greater than 65. This is a substantial improvement of the earlier record (all dimensions … Continue reading

## New Ramanujan Graphs!

Margulis’ paper Ramanujan graphs were constructed independently by Margulis and by Lubotzky, Philips and Sarnak (who also coined the name). The picture above shows Margulis’ paper where the graphs are defined and their girth is studied. (I will come back to the question … Continue reading

Posted in Algebra and Number Theory, Combinatorics, Open problems
Tagged Ramanujan graphs
10 Comments

## A Few Mathematical Snapshots from India (ICM2010)

Can you find Assaf in this picture? (Picture: Guy Kindler.) In my post about ICM 2010 and India I hardly mentioned any mathematics. So here are a couple of mathematical snapshots from India. Not so much from the lectures themselves but … Continue reading

Posted in Conferences, Open problems
Tagged Assaf Naor, Eric Rains, François Loeser, Günter Ziegler, ICM2010
1 Comment

## Looking Again at Erdős’ Discrepancy Problem

Over Gowers’s blog Tim and I will make an attempt to revisit polymath5. Last Autumn I prepared three posts on the problems and we decided to launch them now. The first post is here. Here is a related MathOverflow question. … Continue reading

## A Weak Form of Borsuk Conjecture

Problem: Let P be a polytope in with n facets. Is it always true that P can be covered by n sets of smaller diameter? I also asked this question over mathoverflow, with some background and motivation.

## Satoshi Murai and Eran Nevo proved the Generalized Lower Bound Conjecture.

Satoshi Murai and Eran Nevo have just proved the 1971 generalized lower bound conjecture of McMullen and Walkup, in their paper On the generalized lower bound conjecture for polytopes and spheres . Let me tell you a little about it. … Continue reading

## Cup Sets, Sunflowers, and Matrix Multiplication

This post follows a recent paper On sunflowers and matrix multiplication by Noga Alon, Amir Spilka, and Christopher Umens (ASU11) which rely on an earlier paper Group-theoretic algorithms for matrix multiplication, by Henry Cohn, Robert Kleinberg, Balasz Szegedy, and Christopher Umans (CKSU05), … Continue reading

## Joe’s 100th MO question

MathOverflow is a remarkable recent platform for research level questions and answers in mathematics. Joe O’Rourke have asked over MO wonderful questions. (Here is a link to the questions) Many of those questions can be the starting point of a research … Continue reading

Posted in Mathematics over the Internet, Open problems
Tagged Joseph O'Rourke, Math Overflow, planetMO
4 Comments