Recent Comments

Recent Posts
 First third of my ICM2018 paper – Three Puzzles on Mathematics, Computation and Games. Corrections and comments welcome
 Preview: The solution by Keller and Lifshitz to several open problems in extremal combinatorics
 Basic Notions Seminar is Back! Helly Type Theorems and the Cascade Conjecture
 My Very First Book “Gina Says”, Now Published by “World Scientific”
 Itai Benjamini: Coarse Uniformization and Percolation & A Paper by Itai and me in Honor of Lucio Russo
 AfterDinner Speech for Alex Lubotzky
 Boaz Barak: The different forms of quantum computing skepticism
 Bálint Virág: Random matrices for Russ
 Test Your Intuition 33: The Great Free Will Poll
Top Posts & Pages
 First third of my ICM2018 paper  Three Puzzles on Mathematics, Computation and Games. Corrections and comments welcome
 Answer: Lord Kelvin, The Age of the Earth, and the Age of the Sun
 Preview: The solution by Keller and Lifshitz to several open problems in extremal combinatorics
 Elchanan Mossel's Amazing Dice Paradox (your answers to TYI 30)
 TYI 30: Expected number of Dice throws
 Can Category Theory Serve as the Foundation of Mathematics?
 If Quantum Computers are not Possible Why are Classical Computers Possible?
 Eran Nevo: gconjecture part 4, Generalizations and Special Cases
 Polymath 10 Emergency Post 5: The ErdosSzemeredi Sunflower Conjecture is Now Proven.
RSS
Category Archives: Polymath10
Polymath10 conclusion
The Polymath10 project on the ErdosRado DeltaSystem conjecture took place over this blog from November 2015 to May 2016. I aimed for an easygoing project that people could participate calmly aside from their main research efforts and the duration of … Continue reading
Posted in Combinatorics, Open problems, Polymath10
Tagged polymath10, sunflower conjecture
4 Comments
Polymath 10 post 6: The ErdosRado sunflower conjecture, and the Turan (4,3) problem: homological approaches.
In earlier posts I proposed a homological approach to the ErdosRado sunflower conjecture. I will describe again this approach in the second part of this post. Of course, discussion of other avenues for the study of the conjecture are welcome. The purpose … Continue reading
Polymath 10 Emergency Post 5: The ErdosSzemeredi Sunflower Conjecture is Now Proven.
While slowly writing Post 5 (now planned to be Post 6) of our polymath10 project on the ErdosRado sunflower conjecture, the very recent proof (see this post) that cap sets have exponentially small density has changed matters greatly! It implies … Continue reading
Polymath10post 4: Back to the drawing board?
It is time for a new polymath10 post on the ErdosRado Sunflower Conjecture. (Here are the links for post1, post2, post3.) Let me summarize the discussion from Post 3 and we can discuss together what directions to peruse. It is … Continue reading
News (mainly polymath related)
Update (Jan 21) j) Polymath11 (?) Tim Gowers’s proposed a polymath project on Frankl’s conjecture. If it will get off the ground we will have (with polymath10) two projects running in parallel which is very nice. (In the comments Jon Awbrey gave … Continue reading
Polymath 10 Post 3: How are we doing?
The main purpose of this post is to start a new research thread for Polymath 10 dealing with the ErdosRado Sunflower problem. (Here are links to post 2 and post 1.) Here is a very quick review of where we … Continue reading
Posted in Combinatorics, Mathematics over the Internet, Open problems, Polymath10
Tagged polymath10, sunflower conjecture
104 Comments
Polymath10, Post 2: Homological Approach
We launched polymath10 a week ago and it is time for the second post. In this post I will remind the readers what the ErdosRado Conjecture and the ErdosRado theorem are, briefly mention some points made in the previous post and in … Continue reading
Polymath10: The Erdos Rado Delta System Conjecture
The purpose of this post is to start the polymath10 project. It is one of the nine projects (project 3d) proposed by Tim Gowers in his post “possible future polymath projects”. The plan is to attack ErdosRado delta system conjecture also known as the … Continue reading
Posted in Combinatorics, Polymath10
Tagged Alexandr Kostochka, Joel Spencer, Paul Erdos, Richard Rado
139 Comments