Recent Comments

Recent Posts
 Hoi Nguyen and Melanie Wood: Remarkable Formulas for the Probability that Projections of Lattices are Surjective
 Petra! Jordan!
 The largest clique in the Paley Graph: unexpected significant progress and surprising connections.
 Thinking about the people of Wuhan and China
 Ringel Conjecture, Solved! Congratulations to Richard Montgomery, Alexey Pokrovskiy, and Benny Sudakov
 Test your intuition 43: Distribution According to Areas in Top Departments.
 Two talks at HUJI: on the “infamous lower tail” and TOMORROW on recent advances in combinatorics
 Amazing: Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen proved that MIP* = RE and thus disproved Connes 1976 Embedding Conjecture, and provided a negative answer to Tsirelson’s problem.
 Do Not Miss: Abel in Jerusalem, Sunday, January 12, 2020
Top Posts & Pages
 Hoi Nguyen and Melanie Wood: Remarkable Formulas for the Probability that Projections of Lattices are Surjective
 Aubrey de Grey: The chromatic number of the plane is at least 5
 Konstantin Tikhomirov: The Probability that a Bernoulli Matrix is Singular
 Elchanan Mossel's Amazing Dice Paradox (your answers to TYI 30)
 Ringel Conjecture, Solved! Congratulations to Richard Montgomery, Alexey Pokrovskiy, and Benny Sudakov
 Answer: Lord Kelvin, The Age of the Earth, and the Age of the Sun
 Gil's Collegial Quantum Supremacy Skepticism FAQ
 Coloring Problems for Arrangements of Circles (and Pseudocircles)
 Amazing! Keith Frankston, Jeff Kahn, Bhargav Narayanan, Jinyoung Park: Thresholds versus fractional expectationthresholds
RSS
Category Archives: Polymath10
Polymath10 conclusion
The Polymath10 project on the ErdosRado DeltaSystem conjecture took place over this blog from November 2015 to May 2016. I aimed for an easygoing project that people could participate calmly aside from their main research efforts and the duration of … Continue reading
Posted in Combinatorics, Open problems, Polymath10
Tagged polymath10, sunflower conjecture
5 Comments
Polymath 10 post 6: The ErdosRado sunflower conjecture, and the Turan (4,3) problem: homological approaches.
In earlier posts I proposed a homological approach to the ErdosRado sunflower conjecture. I will describe again this approach in the second part of this post. Of course, discussion of other avenues for the study of the conjecture are welcome. The purpose … Continue reading
Polymath 10 Emergency Post 5: The ErdosSzemeredi Sunflower Conjecture is Now Proven.
While slowly writing Post 5 (now planned to be Post 6) of our polymath10 project on the ErdosRado sunflower conjecture, the very recent proof (see this post) that cap sets have exponentially small density has changed matters greatly! It implies … Continue reading
Polymath10post 4: Back to the drawing board?
It is time for a new polymath10 post on the ErdosRado Sunflower Conjecture. (Here are the links for post1, post2, post3.) Let me summarize the discussion from Post 3 and we can discuss together what directions to peruse. It is … Continue reading
News (mainly polymath related)
Update (Jan 21) j) Polymath11 (?) Tim Gowers’s proposed a polymath project on Frankl’s conjecture. If it will get off the ground we will have (with polymath10) two projects running in parallel which is very nice. (In the comments Jon Awbrey gave … Continue reading
Polymath 10 Post 3: How are we doing?
The main purpose of this post is to start a new research thread for Polymath 10 dealing with the ErdosRado Sunflower problem. (Here are links to post 2 and post 1.) Here is a very quick review of where we … Continue reading
Posted in Combinatorics, Mathematics over the Internet, Open problems, Polymath10
Tagged polymath10, sunflower conjecture
104 Comments
Polymath10, Post 2: Homological Approach
We launched polymath10 a week ago and it is time for the second post. In this post I will remind the readers what the ErdosRado Conjecture and the ErdosRado theorem are, briefly mention some points made in the previous post and in … Continue reading
Polymath10: The Erdos Rado Delta System Conjecture
The purpose of this post is to start the polymath10 project. It is one of the nine projects (project 3d) proposed by Tim Gowers in his post “possible future polymath projects”. The plan is to attack ErdosRado delta system conjecture also known as the … Continue reading
Posted in Combinatorics, Polymath10
Tagged Alexandr Kostochka, Joel Spencer, Paul Erdos, Richard Rado
141 Comments