So far there are 31 formulas and quite a few were new to me. There are several areas of combinatorics that are not yet represented. As is natural, many formulas come from enumerative combinatorics. Don’t hesitate to contribute (best – on MathOverflow) more formulas!

]]>

**Update on the great Noga’s Formulas competition.** (Link to the original post, many cash prizes are still for grab!)

This is the third “Updates and plans post”. The first one was from 2008 and the second one from 2011.

A lot is happening! I plan to devote special posts to some of these developments.

**Karim Adiprasito (with a fan), June Huh, and Eric Katz (click to enlarge!)**

The Heron-Rota-Welsh conjecture regarding the log-concavity of coefficients of the characteristic polynomials of matroids is now proved in full generality by Karim Adiprasito, June Huh, and Erick Katz! (Along with several other related conjectures.) A few years ago Huh proved the conjecture for matroids over the reals, and with Katz they extended it to representable matroids over any field. Those results used tools from algebraic geometry. (See this post and this one.) Some months ago Adiprasito and Sanyal gave a proof, based on Alexanderov-Fenchel inequalities and measure concentration, for $c$-arrangements. The general approach of Adiprasito, Huh and Katz of doing “algebraic geometry” in more general combinatorial contexts is very promising. Here is a link to a vidotaped lecture Hodge theory for combinatorial geometries by June Huh.

(Thanks to Elchanan Mossel and Avi Wigderson for telling me about it.)

Reed-Muller Codes Achieve Capacity on Erasure Channels by Santhosh Kumar, Henry D. Pfister

(and thanks to Kodlu’s comment) Reed-Muller Codes Achieve Capacity on the Binary Erasure Channel under MAP Decoding, by Shrinivas Kudekar, Marco Mondelli, Eren Şaşoğlu, Rüdiger Urbanke

Abstract (for the first paper; for the second see the comment below): This paper introduces a new approach to proving that a sequence of deterministic linear codes achieves capacity on an erasure channel under maximum a posteriori decoding. Rather than relying on the precise structure of the codes, this method requires only that the codes are highly symmetric. In particular, the technique applies to any sequence of linear codes where the blocklengths are strictly increasing, the code rates converge to a number between 0 and 1, and the permutation group of each code is doubly transitive. This also provides a rare example in information theory where symmetry alone implies near-optimal performance.

An important consequence of this result is that a sequence of Reed-Muller codes with increasing blocklength achieves capacity if its code rate converges to a number between 0 and 1. This possibility has been suggested previously in the literature but it has only been proven for cases where the limiting code rate is 0 or 1. Moreover, these results extend naturally to affine-invariant codes and, thus, to all extended primitive narrow-sense BCH codes. The primary tools used in the proof are the sharp threshold property for monotone Boolean functions and the area theorem for extrinsic information transfer functions.

For me, a pleasant surprise was to learn about connections between threshold behavior and coding theory that I was not aware of, and here specifically, using results with Bourgain on influences under specific groups of permutations.

(Thanks to Guy Kindler and Avi Wigderson.)

Explicit Two-Source Extractors and Resilient Functions, by Eshan Chattopadhyay and David Zuckerman

Abstract: We explicitly construct an extractor for two independent sources on bits, each with min-entropy at least for a large enough constant . Our extractor outputs one bit and has error . The best previous extractor, by Bourgain [B2], required each source to have min-entropy .

A key ingredient in our construction is an explicit construction of a monotone, almost-balanced boolean function on bits that is resilient to coalitions of size , for any . In fact, our construction is stronger in that it gives an explicit extractor for a generalization of non-oblivious bit-fixing sources on bits, where some unknown bits are chosen almost -wise independently, and the remaining bits are chosen by an adversary as an arbitrary function of the bits. The best previous construction, by Viola \cite{Viola14}, achieved .

Our other main contribution is a reduction showing how such a resilient function gives a two-source extractor. This relies heavily on the new non-malleable extractor of Chattopadhyay, Goyal and Li [CGL15].

Our explicit two-source extractor directly implies an explicit construction of a -Ramsey graph over $N$ vertices, improving bounds obtained by Barak et al. [BRSW12] and matching independent work by Cohen [Coh15b].

Here are comments by Oded Goldreich. For me, a pleasant surprise regarding the construction is that it uses, in addition to an ingenious combination of ingenious recent results (by Li, Cohen, Goyal, the authors, and others) about extractors, also influences of sets of Boolean functions and, in particular, the important construction of Ajtai and Linial. (that I mentioned here several times). Recently with Bourgain and Kahn we studies influences of large sets giving examples related to the Ajtai-Linial example. **Update**: Another pleasant surprise was to learn (from Avi W.) that among the ingredients used in this new work is Feige’s collective coin flipping method with a very small number of rounds, which was used by Li miraculously in the extractor engineering.

A non-partitionable Cohen-Macaulay simplicial complex by Art M. Duval, Bennet Goeckner, Caroline J. Klivans, and Jeremy L. Martin.

Duval, Goeckner, Klivans, and Martin gave an explicit and rather small counterexample to a conjecture of Garsia and Stanley that every Cohen-Macaulay simplicial complex is decomposable, namely its set of faces can be decomposed into Boolean intervals where are facets (maximal faces).

The much awaited paper by Mabillard and Wagner is now on the arxive. See this post on topological Tverberg’s theorem.

Eliminating Higher-Multiplicity Intersections, I. A Whitney Trick for Tverberg-Type Problems, by Isaac Mabillard and Uli Wagner

**Abstract:** Motivated by topological Tverberg-type problems and by classical results about embeddings (maps without double points), we study the question whether a finite simplicial complex K can be mapped into R^d without triple, quadruple, or, more generally, r-fold points. Specifically, we are interested in maps f from K to that have no r-Tverberg points, i.e., no r-fold points with preimages in r pairwise disjoint simplices of K, and we seek necessary and sufficient conditions for the existence of such maps.

We present a higher-multiplicity analogue of the completeness of the Van Kampen obstruction for embeddability in twice the dimension. Specifically, we show that under suitable restrictions on the dimensions, a well-known Deleted Product Criterion (DPC) is not only necessary but also sufficient for the existence of maps without r-Tverberg points. Our main technical tool is a higher-multiplicity version of the classical Whitney trick.

An important guiding idea for our work was that sufficiency of the DPC, together with an old result of Ozaydin on the existence of equivariant maps, might yield an approach to disproving the remaining open cases of the long-standing topological Tverberg conjecture. Unfortunately, our proof of the sufficiency of the DPC requires a “codimension 3” proviso, which is not satisfied for when K is the N-simplex.

Recently, Frick found an extremely elegant way to overcome this last “codimension 3” obstacle and to construct counterexamples to the topological Tverberg conjecture for d at least 3r+1 (r not a prime power). Here, we present a different construction that yields counterexamples for d at least 3r (r not a prime power).

(Thanks to Tami Ziegler) We followed over here here sparsely and laymanly a few developments in analytic number theory (mainly related to gaps in primes and Möbius randomness). It is a pleasure to mention another breakthrough, largely orthogonal to earlier ones by Kaisa Matomaki and Maksym Radziwill. (Here is a link to the paper and to related blog posts by Terry Tao (1), (2)).

On mid-June my former students organized a lovely conference celebrating my 60th birthday which I enjoyed greatly. I do plan to devote a post to the lectures and the event. Meanwhile, here are a few pictures.

In the last year or so I made only very short trips. Here is a quick report on some from the last months.

This was the second time I participated in a British combinatorial conference, after BCC1979 that I participated as a student. My lecture and paper for the proceedings deal with questions around Borsuk’s problem. Here is the BCC paper Some old and new problems in combinatorial geometry I: Around Borsuk’s problem. The proceeding is as always very recommended and let me mention, in particular, Conlon, Fox and Sudakov’s survey on Graph Ramsey theory. One of the participants, Anthony Hilton, took part in each and every earlier BCC. Another, Peter Cameron (blog) also gave an impressive singing with guitar performance.

I gave an expose on Keevash’s work about designs. My experience with giving this seminar is quite similar to the experience of other mathematicians. It was an opportunity to learn quite a few new things. Here is a draft of the written exposition Design exists (after Peter Keevash). . (And here are the slides) Remarks are most welcome. The event was very exciting and J-P Serre actively participated in the first half of the day. I plan to write more about it once the paper is finalized.

Laszlo Fejer Toth 100th birthday conference was in Budapest. I gave a talk (click for the slides) on works of Jiri Matousek. It was great to meet many friends from Hungary and other places, some of which I did not meet for many years, including Asia Ivic-Weiss, Wlodek and Greg Kuperberg, Frank Morgan, Sasha Barvinok, and many others. I plan to report at a later time on some things Sasha Barvinok have told me.

My colleagues Abraham Neyman (Merale) and Sergiu Hart celebrated with a back-to-back conferences devoted to Game theory. Egon Schulte and Caroly Bezdek celebrated together a 60th birthday conference. Congratulations to all.

On infinite combinatorics are coming. We have some further promises for guest posts and even guest columns.

I plan a new polymath project. Details will follow.

We live now in Tel-Aviv and I commute 2-3 times a week to Jerusalem. Jerusalem is, of course, a most exciting and beautiful city and a great place to live (especially in the summer), and I also love Tel-Aviv, its rhythm and atmosphere, and the beach, of course. My three children and grandchild are TelAvivians. One interesting aspect of the change is the move from a ground floor with a yard to a high floor with view.

**Polytopes.** We had several posts on convex polytopes. **I next plan to discuss the diameter problem for polytopal graphs (the Hirsch conjecture) and related questions on the simplex algorithm.** (In fact, we already started.)

**Telling a simple polytope from its graph.** The one proof I presented most often in lectures is my proof of the Blind-Mani theorem that asserts that simple polytopes are determined by their graphs. **I will try to blog this proof, tell you some open problems around it,** and **write about a startling theorem of Eric Friedman who found a polynomial-time algorithm.**

**Influences and Fourier.** We talked about influence but not about a major technique which emerged in their study: Fourier Analysis of Boolean functions.” So **we will discuss Boolean functions and their spectrum, and revisit influences and look at noise-sensitivity**. **Muli Safra will give a post on the Goldreich Levin theorem and related stuff.**

**Pre-polymath.** So far our open discussion “Is mathematics a science” attracted a single (nice) comment, and the poem translation contest is still waiting for quality translations. Perhaps we can try an open discussion of a single theorem/problem and see how it goes. **(We had two series of posts on diameter of polytopes, the later as polymath3.) **

**Translations to arabic?** I was just told that along with Landsburg’s book itself, my book review might be translated to Arabic. **Sababa**! **(Never heard about it again.**)

**Quantum and complexity.** I will tell you about **my ideas** regarding detrimental noise for quantum computations, but only **after trying** to describe something about the beautiful, deep, and surprising subject of quantum computation and quantum information. I will not do it before having **at least one post** about classical computation complexity.

**Polymath 3, 1,4,5**: There are more spin-offs of the old polymath projects I plan to write about, (**Done**) in particular on some polymath5 ideas possibly on Gowers’ blog .

**Around Borsuk’s conjecture:** A series of 2-3 posts about problems related to Borsuk’s conjecture are already half-written. **(Done)**

**Stories about Avi Wigderson and me.** The purposes of taxi-and-other stories and mathematics-to-the-rescue stories was as a tool to waste immediately any reputation which I may gain on this blog (e.g., the embarrassing yet educational pills story followed immediately the first comment by Tim Gowers on this blog). The *Layish story*, which was indirectly referred to in the very first post will mark a new stage in the reputation-waste agenda. (Along with a few other stories involving me and Avi W.) ** (Too early for that, I suppose.) **Also we are negotiating with Michal Linial for more of her wonderful stories.** (still negotiating)**

**Huntington library pictorial: **This is certainly one of my * most ambitious* planned posts, and this explains why it takes so much time to write. It addresses a long-standing problem which becomes more acute with time:

How to show pictures in a non-boring way.

The planned post will be a pictorial description of a legendary tour from fall 2009, guided by Benny Sudakov, of the Huntington Library in Pasadena.

**Update: Well, while having semi-novels ideas on how to present the pictures, It was not clear that I can make it non-boring.**

**Proofs:** There are proofs that I like to present (like this one), and I plan to present here a few more proofs: A proof of **KKL’s theorem** that is mentioned here; **Alon-Kleitman’s proof **of the Hadwiger-Debrunner conjecture; and a famous **proof by Perles** which uses lice.

**Contingency tables**. Sasha Barvinok gave an illuminating talk at Yale in October 2008 about contingency tables, and this is a very nice story with many facets. It started with a paper of Diaconis and Efron, which was followed, to a mathematician’s envy, by several papers criticizing their proposal, and a rejoiner. It is fortunate that I did not post about it at the time, since a lot has happened afterwards. The same talk and visit led to a fruitful collaboration between Sasha and J.A. Hartigan.** I still did not post about it but I plan to.**

**Posets: I still owe a post** about partially ordered sets (POSETS) in the extremal combinatorics series (I,II,III,IV,VI).

**f-vectors and homology: **There was a series of posts about the -conjecture and it seems like a **good time to write about the relation between face numbers and topology** (and mainly homology).

]]>

The poster includes 15 formulas representing some of Noga’s works. Can you identify them?

The first commentator to identify a formula will win a prize of 10 Israeli Shekels (ILS) that can be claimed on Noga’s Fest itself, (or else, in person, next time we meet after the meeting.) Cash prizes claimed in person on the meeting will be doubled! Cash prizes for the oldest and newest formulas are tripled! There is a limit of one answer/prize per person/ per week. Answers need to include the formula itself, tell what the formula is, and give crucial details about it.

For each of these formulas, once identified, the comment giving the latest place where the formula is reproduced, (in a later paper or book not coauthored by any of the original discoverers) will be eligible also to 5 ILS prize. The same doubling and tripling rules as above apply. Here there is no limit on answers per person.

There will be 5 additional prizes of 20 ILS for formulas by Noga, that did not make it to the poster. Same doubling and tripling rules apply.

Among all participants who are students or post docs, one grant for a round trip to the meeting will be given.

People involved in preparing the poster are not eligible.

And here are more details on the meeting itself. (The meeting also celebrates a decade anniversary for Zeilberger’s Opinion 71.)

- Béla Bollobás – University of Cambridge
- Jennifer Chayes – Microsoft Research
- Uri Feige – Weizmann Institute
- Jacob Fox – Stanford University
- Péter Frankl – Alfréd Rényi Inst. of Math
- Zoltán Füredi – Alfréd Rényi Inst. of Math
- Shafi Goldwasser – MIT and Weizmann Institute
- Gil Kalai – Hebrew University
- Nati Linial – Hebrew University
- László Lovász – Eötvös Loránd University
- Vitali Milman – Tel Aviv University
- Assaf Naor – Princeton University
- Jaroslav Nešetřil – Charles University
- János Pach – EPFL
- Yuval Peres – Microsoft Research
- Vojtěch Rödl – Emory University
- Peter Sarnak – Princeton University and IAS
- Alexander Schrijver – CWI Amsterdam
- Micha Sharir – Tel Aviv University
- Saharon Shelah – Hebrew/Rutgers University
- Joel Spencer – NYU
- Endre Szemerédi – Alfréd Rényi Inst. of Math
- Terence Tao – UCLA
- Moshe Tennenholtz – Technion
- Avi Wigderson – IAS
- Tamar Ziegler – Hebrew University

- Yossi Azar – Tel Aviv University
- Michael Krivelevich – Tel Aviv University
- Asaf Shapira – Tel Aviv University
- Benny Sudakov – ETH Zurich
- Uri Zwick – Tel Aviv University

]]>

With me, 1956

My father Hanoch Kalai, my mother Carmella, My sister Tamar (Tami) and me around 1957).

Photos from the 80s, 20s, and 2013.

Chess-set based on masks

]]>

Ramsey’s famous theorem asserts that if is a complete graph on vertices then is finite. Ir follows that is finite for every graph and understanding the dependence of on is a very important question. Of course there are very basic extensions: to many colors, to different requirements for different colors, and to hypergraphs.

A graph is -degenerate if it can be reduced to the empty graph by successively deleting vertices of degree at most . Thus, trees are 1-degenerate (and 1-degenerate graphs are forests), and planar graphs are 5-degenerate. For graphs to be degenerate is equivalent to the condition that the number of edges is at most linear times the number of vertices uniformly for all subgraphs.

In 1973, Burr and Erdős conjectured that that for every natural number , there exists a constant such that every -degenerate graph on vertices satisfies This is a very different behavior than that of complete graphs where the dependence on the number of vertices is exponential. In 1983 Chvátal, Rödl, Szemerédi, and Trotter proved the conjecture when the maximum degree is bounded. Over the years further restricted cases of the conjectures were proved some weaker estimates were demonstrated. These developments were instrumental in the developments of some very basic tools in extremal and probabilistic combinatorics. Lee’s paper Ramsey numbers of degenerate graphs proved the conjecture!

]]>

Readers of the big-league ToC blogs have already heard about the breakthrough paper An average-case depth hierarchy theorem for Boolean circuits by Benjamin Rossman, Rocco Servedio, and Li-Yang Tan. Here are blog reports on Computational complexity, on the Shtetl Optimized, and of Godel Lost letter and P=NP. Let me mention one of the applications: refuting a 1999 conjecture by Benjamini, Schramm and me.

**Update:** Li-Yang Tang explained matters in an excellent comment below. Starting with: “In brief, we believe that an average-case depth hierarchy theorem rules out the possibility of a converse to Hastad-Boppana-LMN when viewed as a statement about the total influence of *constant*-depth circuits. However, while the bound is often applied in the setting where *d* is constant, it in fact holds for all values of *d*. It would interesting to explore the implications of our result in regimes where *d* is allowed to be super-constant.

Let me add that the bounded depth case is an important case (that I referred to here), that there might be some issues failing the conjecture for non-constant depth “for the wrong reasons”, and that I see good prospect that RST’s work and techniques will refute BKS conjecture in full also for non-bounded depth.

**Update: **Rossman, Servedio, and Tan refuted some important variations of our conjecture, while other variations remain open. My description was not so accurate and in hindsight I could also explained the background and motivation better. So rather than keep updating this post, I will write a new one in a few weeks.

**Theorem:** If* f* is described by a bounded depth circuit of size s and depth *d* then* I(f)* the total influence of* f*, is at most .

The total influence of is defined as follows: for an input write for the number of neighbors *y* of *x* with . .

The history of this result as I remember it is that: it is based on a crucial way on Hastad Switching lemma going back to Hastad 1986 thesis, and for monotone functions one can use an even earlier 1984 result by Boppana. It was first proved (with exponent “d”) in 1993 by Linial-Mansour and Nisan, as a consequence of their theorem on the decay of Fourier coefficients for AC0 functions, (also based on the switching lemma). With the correct exponent d-1 it is derived from the switching lemma in a short clean argument in a 97 paper by Ravi Boppana; and finally it was extended to a sharpening of LMN result about the spectral decay by Hastad (2001).

**Mike Sipser**

**Conjecture:** (Benjanmini, Kala, and Schramm, 1999): Every Boolean function *f* is “close” to some depth-*d* size *s* circuit with not much larger than* I(f).*

Of course, the exponent *(d-1)* is strongest possible but replacing it with some constant times *d* is also of interest. (Also the monotone case already capture much interest.)

As we will see the conjecture is false even if the exponent* d-1* is replaced by a constant times *d*. I do not know what is the optimal function *u(d) *if any for which you can replace the exponent *d-1* by *u(d)*.

**Update:** Following some comments by Boaz Barak I am not sure that indeed the new examples and results regarding them leads to disproof of our conjecture. The remarkable part of RST’s paper is that the RST example cannot be approximated by a circuit of smaller depth – even by one. (This has various important applications.) In order to disprove our conjecture one need to show that the influence of the example is smaller than what Boppana’s inequality ( ) gives. This is not proved in the paper (but it may be true).

The RST’s result **does say** that if the influence is (say) log*n* (where *n* is the number of variables,) and the function depends on a small number of variables then it need not be correlated with a function in AC0.

Anyway I will keep you posted.

in 2007 O’Donnell and Wimmer showed that our inverse conjecture is false as stated. They took a Boolean function which is a tribe function on half the variables and “anti-tribes” on the rest. This still left the possibility that the exponent *d-1* could be replaced by *d* or that “close” could be replaced by a weaker conclusion on substantial correlation.

Rossman, Servedio, and Tan.show a genuinely new reason for small influence!Their example, named after Mike Sipser, is based on the AND-OR tree – a Boolean formula with alternating AND and OR levels and carefully designed parameters. The crucial part is to show that you cannot approximate this function by lower depth circuits. The theorem proved by RST is amazingly strong and does not allow reducing the depth even by one! The novel technique for proving it of random projections is very exciting.

It is still possible (I think) that such inverse theorems hold when the individual influences of all variables is below *polylog(n)/n* where *n* is the number of variables. Let me pose it as a conjecture:

**Conjecture:** Every Boolean function *f* with *n* variables and individual influences below *polylog (n)/n* is close to a function *g* ~~in AC0 ~~ of size *s* depth *d* where is polylog (n).

And here is a post on TCSexchange with a question about “monotone vs positive” for the class **P**. Similar questions for AC0 and TC0 were asked in this post.

]]>

Here is the meeting’s homepage!

The organizers asked me also to mention that some support for accommodation in Jerusalem for the duration of the conference is available.

]]>

**Muli, Dor and Subash, Jerusalem May 21 2015.**

**Michel Talagrand Gregory Margulis**

In this post I will tell you about a new paper by **Subhash Khot, Dor Minzer and Muli Safra** entitled: On Monotonicity Testing and Boolean Isoperimetric type Theorems. This remarkable paper gives a definite answer to one of the main open problems on property testing, proves some wonderful new isoperimetric inequalities, and shed some light on the still mysterous property of monotonicity.

Property testing is an exciting area which lies between mathematics and the theory of computing. (Closely related to PCP and to some modern aspects of error-correcting codes.) Here is a post about it in Terry Tao’s blog.

Suppose that you have an unknown graph G and you want to distinguish between two possibilities

1) The graph G contains a triangles

2) We can remove an 1% of the edges of G so that no triangle will remain.

It turns out that by looking at a bounded number of edges drawn at random we can either demonstrate that G contains a triangle or demonstrate that with high probability the second possibility holds! Moreover, this is a deep mathematical result.

Property testing resembles a little election polls (and, more generally statistical hypothesis testing): We can estimate the outcomes of the election with good accuracy and high probability by probing the votes of a bounded number of voters.

Given a Boolean function f, what is the smallest number of queries needed to be able to say

1) The function* f* is not monotone:

2) With high probability* f* is at most ε-far from monotone, namely, it can be made monotone by flipping the value of at most values.

We will denote by *ε(f)* the* *normalized Hamming distance distance of a Boolean function* f* to the set of monotone functions.

**A brief incomplete history of monotone testing**

1)** Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samorodnitsky.** Testing monotonicity. Combinatorica, 20(3):301–337, 2000.

This paper considered the tester: Choose *x* and* y* at random such that* y > x* test if *f(y) < f(x)*.

Using the basic edge isoperminetric inequality it was proved that *n* queries suffice.

It tooks 15 years a new tester and a new isoperimetric inequality to break this record and show that queries suffice.

2) **Deeparnab Chakrabarty and C. Seshadhri.** A o(n) monotonicity tester for boolean functions over the hypercube. In Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 411–418, 2013.

An improvement to was achieved here

3) **Xi Chen, Rocco Servedio, and Li-Yang Tan.** New algorithms and lower bounds for monotonicity testing. In Annual Symposium on Foundations of Computer Science, FOCS ’14, 2014.

The paper by Khot, Minzer and Safra reduces this to the optimal (apart from powers of log*n*) .They use yet a new tester and a new isoperimetric inequality.

I did not talk about adaptive version of the problem about lower bounds and about the dependence on . Khot, Minzer and Safra also give (up to powers of log) optimal dependence on .

**Margulis’s Theorem:** Let f be a Boolean function on . Let $\latex \mu$ be the uniform probability measure on $\Omega_n$. For define

* *

Now, the edge boundary (or total influence) of* f* is defined by

it is also denoted by .

The vertex boundary of* f* is defined by

The classic edge-isoperimetric result asserts that

**(1)**

Here *var(f),* is the variance of* f*.

Margulis theorem asserts that for some constant C:

**(2)**

In fact Margulis proved the result in greater generality for Bernoulli probability measures defined by where .

**Talagrand’s theorem:**

**(3)**

Again Talagrand’s theorem extends to the Bernoulli case. Talagrand’s theorem implies Margulis’ theorem by a simple application of the Cauchy-Swarz inequality.

Let me diverge and mention two other important results in this spirit. Bobkov’s theorem gives a sharp result when we consider the expectation of , rather than , where* h(x)* is defined just like* I(x)* but also for *x* so that *f(x)=0*.

Let , where *y* is obtained from *x* by flipping the *k*th coordinate and let be the influence of the *k*th variable on* f*. (Sometimes the influence is defined as twice this number.)

Let . If f is monotone than *II(f)* is at most * var (f).*

**Theorem (Talagrand 1997):**

**(4)** .

Talagrand conjectured that can be taken to be 1/2. Proving it would be great!

Here is a page with links to Talagrand’s preprints (in dvi forms) Talagrand’s hompage includes prize questions that he asked over the years.

Following the first section of Khot, Minzer, and Safra’s paper I will briefly mention now isoperimetric inequalities related to monotonicity

Recall that *ε(f)* denote the* *normalized Hamming distance distance of a Boolean function* f* to the set of monotone functions.

Define when *f(x)=0*, and when* f(x)=1*

Thus, measures local violations of monotonicity. If *f* is monotone then for every *x*. Define . This quantity can be referred to as “total negative influence.”

**Goldreich, Goldwasser, Lehman, Ron, Samorodnitsky**

The first monotonicity testing result relied on an analog for the basic edge isoperimetric theorem.

**(5)**

** Chakrabarty and Seshadhri.**

We can define as the vertex boundary just for violations of monotonicity.

**(6)**

**Khot, Minzer and Safra**

**(7)** .

Here the ~ means “up to polylogarithmic factors in n. (It will be very interesting to eliminate this little ~.)

I will end my description here.** **Chakrabarty and Seshadhri needed a further refinement of their inequality for their theorem, and Khot, Minzer, and Safra needed two further refinements and robust versions of their basic inequality in order to prove their goal. The proofs of the isoperimetric results and how to apply them for monotonicity testing are also very interesting.

]]>

**Angry birds peace treaty** by **Eretz Nehederet**

A few years ago I became interested in the question of whather new versions of the computer game “Angry Birds” gradually makes it easier to get high scores. Devoted to the idea of Internet research activity I decided to explore this question on “ARQADE” a Q/A site for video games. I was especially encouraged by the success of an earlier question that was posted there by Andreas Bonini: Is Angry Birds deterministic? As you can see Bonini’s question got 239 upvotes making it the second most popular quastion in the site’s history. (The answer with 322 upvotes may well be the most popular answer!) Is Angry Birds deterministic? (Click on pictures to enlarge.)

Arqade’s top questions

Some comments to the answer regarding Angry Birds.

The question if Angry Birds is deterministic is the second most decorated question on Arqade, and its answers were extremely popular as well. (Other decorated questions include: How can I tell if a corpse is safe to eat? How can I kill adorable animals? and My head keeps falling off. What can I do?.) As you can see from the comments taken from the site referring to science was warmly accepted!

I decided to ask a similar question about new versions and hoped for a similar success. Oh well! After about a week taken to have my pride healed, I thought that perhaps a more detailed question sticking more to the factual matter would be more welcome. Indeed this version was slightly better accepted. But still it was not welcome at all.

I had better luck in the sister site “Game Development”. (Here is the link.)

One critique to my question was the assertion that the only way to know the answer is to ask the manufacturer. I beg to disagree. The heuristic that (especially for simple rounds where all you have to do is to hit in one direction) one can expect that the number of records broken will be logarithmic in the number of trials seems pretty strong. (Here is a recent related post by Tim Gowers.) And there should be more elaborate ways to put my hypothesis to the test. Here is an interesting related post “Rigged Lottery, Bible Codes, and Spinning Globes: What Would Kolmogorov Say?” by Omer Reingold.

This is still a bit of a mystery.

The new hit video game is Candy Crash. Questions regarding manipulation of the players by the game were raised several times especially that the game allows to buy “extra moves” for money.

Back in the time that Angry Birds was in the height of its popularity and my skeptical interest and activity regarding it were most intensive, something very unusal happened. While I was walking from my home in Bet Hakerem to the department I heard a sharp voice, and a big red bird just landed one meter away from me. Was this a coincidence or a warning of some sort?

Here is some more discussion at Doron Zeilberger’s experimental mathematics seminar:

]]>

Arguably mathematics is getting harder, although some people claim that also in the old times parts of it were hard and known only to a few experts before major simplifications had changed matters. Let me report here about two recent remarkable simplifications of major theorems. I am thankful to Nati Linial who told me about the first and to Itai Benjamini and Gady Kozma who told me about the second. Enjoy!

Here is the paper. **Abstract:** It was conjectured by Alon and proved by Friedman that a random -regular graph has nearly the largest possible spectral gap, more precisely, the largest absolute value of the non-trivial eigenvalues of its adjacency matrix is at most with probability tending to one as the size of the graph tends to infinity. We give a new proof of this statement. We also study related questions on random *n*-lifts of graphs and improve a recent result by Friedman and Kohler.

Here is the paper **Abstract:** We provide a new proof of the sharpness of the phase transition for nearest-neighbour Bernoulli percolation. More precisely, we show that – for , the probability that the origin is connected by an open path to distance $n$ decays exponentially fast in $n$. – for , the probability that the origin belongs to an infinite cluster satisfies the mean-field lower bound . This note presents the argument of this paper by the same authors, which is valid for long-range Bernoulli percolation (and for the Ising model) on arbitrary transitive graphs in the simpler framework of nearest-neighbour Bernoulli percolation on .

]]>