Recent Comments

Recent Posts
 Laci Babai Visits Israel!
 Polymath10 conclusion
 Is HeadsUp Poker in P?
 The Median Game
 International mathematics graduate studies at the Hebrew University of Jerusalem
 Polynomial Method Workshop
 Amazing: Stefan Glock, Daniela Kühn, Allan Lo, and Deryk Osthus give a new proof for Keevash’s Theorem. And more news on designs.
 The US Elections and Nate Silver: Informtion Aggregation, Noise Sensitivity, HEX, and Quantum Elections.
 Avifest live streaming
Top Posts & Pages
 Laci Babai Visits Israel!
 The Median Game
 Polymath10 conclusion
 About Conjectures: Shmuel Weinberger
 Amazing: Peter Keevash Constructed General Steiner Systems and Designs
 Polymath 10 Emergency Post 5: The ErdosSzemeredi Sunflower Conjecture is Now Proven.
 International mathematics graduate studies at the Hebrew University of Jerusalem
 'Gina Says'
 A Breakthrough by Maryna Viazovska Leading to the Long Awaited Solutions for the Densest Packing Problem in Dimensions 8 and 24
RSS
Search Results for: erdos
News (mainly polymath related)
Update (Jan 21) j) Polymath11 (?) Tim Gowers’s proposed a polymath project on Frankl’s conjecture. If it will get off the ground we will have (with polymath10) two projects running in parallel which is very nice. (In the comments Jon Awbrey gave … Continue reading
Polymath 10 Post 3: How are we doing?
The main purpose of this post is to start a new research thread for Polymath 10 dealing with the ErdosRado Sunflower problem. (Here are links to post 2 and post 1.) Here is a very quick review of where we … Continue reading
Posted in Combinatorics, Mathematics over the Internet, Open problems, Polymath10
Tagged polymath10, sunflower conjecture
104 Comments
Polymath10, Post 2: Homological Approach
We launched polymath10 a week ago and it is time for the second post. In this post I will remind the readers what the ErdosRado Conjecture and the ErdosRado theorem are, briefly mention some points made in the previous post and in … Continue reading
Convex Polytopes: Seperation, Expansion, Chordality, and Approximations of Smooth Bodies
I am happy to report on two beautiful results on convex polytopes. One disproves an old conjecture of mine and one proves an old conjecture of mine. Loiskekoski and Ziegler: Simple polytopes without small separators. Does LiptonTarjan’s theorem extends to high … Continue reading
EDP Reflections and Celebrations
The Problem In 1932, Erdős conjectured: Erdős Discrepancy Conjecture (EDC) [Problem 9 here] For any constant , there is an such that the following holds. For any function , there exists an and a such that For any , … Continue reading
Updates and plans III.
Update on the great Noga’s Formulas competition. (Link to the original post, many cash prizes are still for grab!) This is the third “Updates and plans post”. The first one was from 2008 and the second one from 2011. Updates: Combinatorics and … Continue reading
Posted in Combinatorics, Conferences, Updates
6 Comments
Combinatorics and More – Greatest Hits
Combinatorics and More’s Greatest Hits First Month Combinatorics, Mathematics, Academics, Polemics, … Helly’s Theorem, “Hypertrees”, and Strange Enumeration I (There were 3 follow up posts:) Extremal Combinatorics I: Extremal Problems on Set Systems (There were 4 follow up posts II ; III; IV; VI) Drachmas Rationality, Economics and … Continue reading
Posted in Uncategorized
Leave a comment
Greatest Hits
Combinatorics and More’s Greatest Hits First Month Combinatorics, Mathematics, Academics, Polemics, … Helly’s Theorem, “Hypertrees”, and Strange Enumeration I (There were 3 follow up posts:) Extremal Combinatorics I: Extremal Problems on Set Systems (There were 4 follow up posts II ; III; IV; VI) Drachmas Rationality, Economics and … Continue reading
The Simplex, the Cyclic polytope, the Positroidron, the Amplituhedron, and Beyond
A quick schematic roadmap to these new geometric objects. The positroidron can be seen as a cellular structure on the nonnegative Grassmanian – the part of the real Grassmanian G(m,n) which corresponds to m by n matrices with all m by … Continue reading
When Do a Few Colors Suffice?
When can we properly color the vertices of a graph with a few colors? This is a notoriously difficult problem. Things get a little better if we consider simultaneously a graph together with all its induced subgraphs. Recall that an … Continue reading