Search Results for: g-conjecture

Convex Polytopes: Seperation, Expansion, Chordality, and Approximations of Smooth Bodies

I am happy to report on two beautiful results on convex polytopes. One disproves an old conjecture of mine and one proves an old conjecture of mine. Loiskekoski and Ziegler: Simple polytopes without small separators. Does Lipton-Tarjan’s theorem extends to high … Continue reading

Posted in Combinatorics, Convex polytopes | Tagged , , , , , | 3 Comments

Updates and plans III.

Update on the great Noga’s Formulas competition. (Link to the original post, many cash prizes are still for grab!) This is the third “Updates and plans post”. The  first one was from 2008 and the  second one from 2011. Updates: Combinatorics and … Continue reading

Posted in Combinatorics, Conferences, Updates | 13 Comments

Combinatorics and More – Greatest Hits

Combinatorics and More’s Greatest Hits First Month Combinatorics, Mathematics, Academics, Polemics, … Helly’s Theorem, “Hypertrees”, and Strange Enumeration I (There were 3 follow up posts:) Extremal Combinatorics I: Extremal Problems on Set Systems (There were 4 follow up posts II ; III; IV; VI) Drachmas Rationality, Economics and … Continue reading

Posted in Uncategorized | Leave a comment

Greatest Hits

Combinatorics and More’s Greatest Hits First Month Combinatorics, Mathematics, Academics, Polemics, … Helly’s Theorem, “Hypertrees”, and Strange Enumeration I (There were 3 follow up posts:) Extremal Combinatorics I: Extremal Problems on Set Systems (There were 4 follow up posts II ; III; IV; VI) Drachmas Rationality, Economics and … Continue reading

| Leave a comment

Happy Birthday Richard Stanley!

This week we are celebrating in Cambridge MA , and elsewhere in the world, Richard Stanley’s birthday.  For the last forty years, Richard has been one of the very few leading mathematicians in the area of combinatorics, and he found deep, profound, and … Continue reading

Posted in Combinatorics, Conferences, Happy birthday | Tagged | 5 Comments

Influence, Threshold, and Noise

  My dear friend Itai Benjamini told me that he won’t be able to make it to my Tuesday talk on influence, threshold, and noise, and asked if I already have  the slides. So it occurred to me that perhaps … Continue reading

Posted in Combinatorics, Computer Science and Optimization, Conferences, Probability, Quantum | Tagged , , , , , , , | 6 Comments

Richard Stanley: How the Proof of the Upper Bound Theorem (for spheres) was Found

The upper bound theorem asserts that among all d-dimensional polytopes with n vertices, the cyclic polytope maximizes the number of facets (and k-faces for every k). It was proved by McMullen for polytopes in 1970, and by Stanley for general triangulations … Continue reading

Posted in Combinatorics, Convex polytopes | Tagged , | 2 Comments

Satoshi Murai and Eran Nevo proved the Generalized Lower Bound Conjecture.

Satoshi Murai and Eran Nevo have just proved the 1971 generalized lower bound conjecture of McMullen and Walkup, in their  paper On the generalized lower bound conjecture for polytopes and spheres . Let me tell you a little about it. … Continue reading

Posted in Convex polytopes, Open problems | Tagged , , , , | 3 Comments

Tentative Plans and Belated Updates II

Elementary school reunion: Usually, I don’t write about personal matters over the blog, but having (a few weeks ago) an elementary school reunion after 42 years was a moving and exciting event as to consider making an exception. For now, here … Continue reading

Posted in Updates | Tagged , , , | 6 Comments

Seven Problems Around Tverberg’s Theorem

Imre Barany, Rade Zivaljevic, Helge Tverberg, and Sinisa Vrecica  Recall the beautiful theorem of Tverberg: (We devoted two posts (I, II) to its background and proof.) Tverberg Theorem (1965): Let be points in , . Then there is a partition of … Continue reading

Posted in Combinatorics, Convexity, Open problems | Tagged , , | 21 Comments