### Recent Comments

dinostraurio on Seven Problems Around Tverberg… Matthew Cory on The Quantum Computer Puzzle @… Matthew Cory on The Quantum Computer Puzzle @… The Quantum Computer… on A Breakthrough by Maryna Viazo… The Quantum Computer… on Stefan Steinerberger: The Ulam… The Quantum Computer… on Polymath10-post 4: Back to the… Philip Gibbs on Stefan Steinerberger: The Ulam… Philip Gibbs on Stefan Steinerberger: The Ulam… Daniel on Stefan Steinerberger: The Ulam… Philip Gibbs on Stefan Steinerberger: The Ulam… Gil Kalai on Stefan Steinerberger: The Ulam… Gabriel Nivasch on Stefan Steinerberger: The Ulam… -
### Recent Posts

- The Erdős Szekeres polygon problem – Solved asymptotically by Andrew Suk.
- The Quantum Computer Puzzle @ Notices of the AMS
- Three Conferences: Joel Spencer, April 29-30, Courant; Joel Hass May 20-22, Berkeley, Jean Bourgain May 21-24, IAS, Princeton
- Math and Physics Activities at HUJI
- Stefan Steinerberger: The Ulam Sequence
- TYI 26: Attaining the Maximum
- A Breakthrough by Maryna Viazovska Leading to the Long Awaited Solutions for the Densest Packing Problem in Dimensions 8 and 24
- Polymath10-post 4: Back to the drawing board?
- News (mainly polymath related)

### Top Posts & Pages

- The Erdős Szekeres polygon problem - Solved asymptotically by Andrew Suk.
- Why Quantum Computers Cannot Work: The Movie!
- A Breakthrough by Maryna Viazovska Leading to the Long Awaited Solutions for the Densest Packing Problem in Dimensions 8 and 24
- The Quantum Computer Puzzle @ Notices of the AMS
- Answer: Lord Kelvin, The Age of the Earth, and the Age of the Sun
- Polymath10: The Erdos Rado Delta System Conjecture
- Polymath10-post 4: Back to the drawing board?
- Greatest Hits
- Two Math Riddles

### RSS

# Search Results for: erdos

## Analysis of Boolean Functions – Week 3

Lecture 4 In the third week we moved directly to the course’s “punchline” – the use of Fourier-Walsh expansion of Boolean functions and the use of Hypercontractivity. Before that we started with a very nice discrete isoperimetric question on a … Continue reading

## Around Borsuk’s Conjecture 3: How to Save Borsuk’s conjecture

Borsuk asked in 1933 if every bounded set K of diameter 1 in can be covered by d+1 sets of smaller diameter. A positive answer was referred to as the “Borsuk Conjecture,” and it was disproved by Jeff Kahn and me in 1993. … Continue reading

## Analysis of Boolean Functions – week 1

Home page of the course. In the first lecture I defined the discrete n-dimensional cube and Boolean functions. Then I moved to discuss five problems in extremal combinatorics dealing with intersecting families of sets. 1) The largest possible intersecting family … Continue reading

## Open Collaborative Mathematics over the Internet – Three Examples

After much hesitation, I decided to share with you the videos of my lecture: Open collaborative mathematics over the internet – three examples, that I gave last January in Doron Zeilberger’s seminar at Rutgers on experimental mathematics. Parts of the 47-minutes … Continue reading

## Analysis of Boolean Functions

This fall I am giving a course at Berkeley on analysis of Boolean functions Course number: CS 294-92 Title: Analysis of Boolean Functions Lectures: TuTh 5:00-6:30 Location: Room 310 Soda First lecture will be was on Thursday August 29th at 5:00pm. Graduate students … Continue reading

## Poznań: Random Structures and Algorithms 2013

Michal Karonski (left) who built Poland’s probabilistic combinatorics group at Poznań, and a sculpture honoring the Polish mathematicians who first broke the Enigma machine (right, with David Conlon, picture taken by Jacob Fox). Update: Here is a picture from 2015, while … Continue reading

Posted in Combinatorics, Conferences, Open problems, Philosophy, Probability
Tagged Poznan, RSA
2 Comments

## Some old and new problems in combinatorics and geometry

Paul Erdős in Jerusalem, 1933 1993 Update: Here is a link to a draft of a paper* based on the first part of this lecture. Some old and new problems in combinatorial geometry I: Around Borsuk’s problem. I just came back from … Continue reading

## New Ramanujan Graphs!

Margulis’ paper Ramanujan graphs were constructed independently by Margulis and by Lubotzky, Philips and Sarnak (who also coined the name). The picture above shows Margulis’ paper where the graphs are defined and their girth is studied. (I will come back to the question … Continue reading

Posted in Algebra and Number Theory, Combinatorics, Open problems
Tagged Ramanujan graphs
10 Comments

## Happy Birthday Ron Aharoni!

Ron Aharoni, one of Israel’s and the world’s leading combinatorialists celebrated his birthday last month. This is a wonderful opportunity to tell you about a few of the things that Ron did mainly around matching theory. Menger’s theorem for infinite … Continue reading

## A Few Mathematical Snapshots from India (ICM2010)

Can you find Assaf in this picture? (Picture: Guy Kindler.) In my post about ICM 2010 and India I hardly mentioned any mathematics. So here are a couple of mathematical snapshots from India. Not so much from the lectures themselves but … Continue reading

Posted in Conferences, Open problems
Tagged Assaf Naor, Eric Rains, François Loeser, Günter Ziegler, ICM2010
1 Comment