A quote from a recent post from **Jordan Ellenberg**‘s blog Quomodocumque:

Briefly: it seems to me that the idea of the Croot-Lev-Pach paper I posted about yesterday

(GK: see also my last post)can indeed be used to give a new bound on the size of subsets of F_3^n with no three-term arithmetic progression! Such a set has size at most (2.756)^n. (There’s actually a closed form for the constant, I think, but I haven’t written it down yet.)Here’s the preprint. It’s very short. I’ll post this to the arXiv in a day or two, assuming I (or you) don’t find anything wrong with it, so comment if you have comments!

This is amazing! The cap set problem was quite popular here on the blog, see also Tao’s 2007 post, and Jordan made also quite an effort over the years in proving the other direction before proving this direction. (Fortunately for our profession, success for two conflicting statements was avoided.) Congratulations to Jordan, Ernie, Seva, and Peter!

Update: Congratulations also to Dion Gijswijt who also derived a similar solution to the cap set problem based on CLP! See this comment on Quomodocumque.

Updates: See also this post by Tao (presenting a symmetric version of the proof), this post by Gowers, this post in by Luca Trevisan, and this post by Peter Cameron, and this post by Anurag Bishnoi. See also this lovely quanta article Set proof stuns mathematicians by Erica Klarreich. See also the post Polynomial prestidigitation on GLL. There, among other things the relation to Smolensky’s early use of the “halving degree trick” for the polynomial method is noted. (See also this comment.)

Of course, there is also plenty of more to desire: Full affine lines for , higher dimensional affine subspaces for , some application to better bounds for Roth’s theorem, Szemeredi’s theorem, (for more, see this comment by Terry Tao,)… It is all very exciting.

Noga Alon also pointed out that the solution of the cap set problem also settles affirmatively the Erdos-Szemeredi weaker version of the Erdos-Rado Delta-system conjecture (via the connections discussed in this post) and also shows that a certain direction for showing that ω=2 for matrix multiplication cannot possibly work. The Erdos-Rado sunflower conjecture is still (at least for a few days) open.

Can the affine results be applied for integers or for combinatorial setting? The geometries are quite different but still… This is of great interest here (and also for other problems like the Kakeya problem). Starting from a positive density set in considered as a subset of we can find there a -dimensional affine subspace contained in the set. Can’t we use it (or such a subspace with a few additional pleasant properties) to get just a single combinatorial line over , or, easier, just a 3-term arithmetic progression when represent a subset of *{1,2,… ,* *}*? A bit later: These thoughts about the relevance of finite field results to questions for the integers (or reals) are not really relevant to the new discovery. But what seems to be relevant is the possibility to transfer the new method for the cap set problem back to the question on better lower bounds for Roth’s theorem.

More updates: Eric Naslund and Will Sawin gave a direct proof based on the polynomial method for the Erdos-Szemeredi sunflower conjecture, and an even stronger result is given by Naslund here. (Eric also has stronger quantitative bounds for Erdos-Szemeredi based on bounds for cap sets.) Ben Green has studied the analogue of Sarkozy’s theorem in function fields (other results on function fields are mentioned by Bloom in this comment); Variants on the CLPEG-arguments are described by Petrov and by Bishnoi over the comment threads here and here. Here is a paper by Jonah Blasiak, Thomas Church, Henry Cohn, Joshua A. Grochow, Chris Umans, on consequences of the cap set result for fast matrix multiplication.

More updates (May 31): New applications are mentioned in a new post on quomodocumque: sumsets and sumsets of subsets including a lovely new application by Jordan, a link to a paper by Robert Kleinberg: A nearly tight upper bound on tri-colored sum-free sets in characteristic 2. And here is a link to a new manuscript by Fedor Petrov Many Zero Divisors in a Group Ring Imply Bounds on Progression–Free Subsets.

One more: (Quoting Arnab Bhattacharyya, June 15 2016 on GLL) Another amazing result that follows from these techniques for one of my favorite problems: http://arxiv.org/pdf/1606.01230v2.pdf. Fox and LM Lovasz improve the bounds for the arithmetic triangle removal lemma dramatically, from a tower of two’s to polynomial!

More (Early July 2016) : An interesting new post on Ellenberg’s blog.