Recent Comments

Recent Posts
 Polymath10, Post 2: Homological Approach
 Polymath10: The Erdos Rado Delta System Conjecture
 Convex Polytopes: Seperation, Expansion, Chordality, and Approximations of Smooth Bodies
 Igor Pak’s collection of combinatorics videos
 EDP Reflections and Celebrations
 Séminaire N. Bourbaki – Designs Exist (after Peter Keevash) – the paper
 Important formulas in Combinatorics
 Updates and plans III.
 NogaFest, NogaFormulas, and Amazing Cash Prizes
Top Posts & Pages
 The KadisonSinger Conjecture has beed Proved by Adam Marcus, Dan Spielman, and Nikhil Srivastava
 Polymath10, Post 2: Homological Approach
 Polymath10: The Erdos Rado Delta System Conjecture
 Four Derandomization Problems
 Updates and plans III.
 New Ramanujan Graphs!
 NogaFest, NogaFormulas, and Amazing Cash Prizes
 Believing that the Earth is Round When it Matters
 Polynomial Hirsch Conjecture 5: Abstractions and Counterexamples.
RSS
Tag Archives: Convex polytopes
Karim Adiprasito: Flag simplicial complexes and the nonrevisiting path conjecture
This post is authored by Karim Adiprasito The past months have seen some exciting progress on diameter bounds for polytopes and polytopal complexes, both in the negative and in the positive direction. Jesus de Loera and Steve Klee described simplicial polytopes which are not … Continue reading
Posted in Convex polytopes, Guest blogger
Tagged Convex polytopes, Flag complexes, Hirsch conjecture, Karim Adiprasito
Leave a comment
Tokyo, Kyoto, and Nagoya
Near Nagoya: Firework festival; Kyoto: with Gunter Ziegler; with Takayuki Hibi, Hibi, Marge Bayer, Curtis Green and Richard Stanly; Tokyo: Peter Frankl; crowded crossing. Added later: Mazi and I at the same restaurant taken by Stanley. I just returned from … Continue reading
Posted in Combinatorics, Conferences, Convex polytopes
Tagged Alternating sign matrices, Convex polytopes, FPSAC, Japan
2 Comments
Projections to the TSP Polytope
Michael Ben Or told me about the following great paper Linear vs. Semidefinite Extended Formulations: Exponential Separation and Strong Lower Bounds by Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj Tiwary and Ronald de Wolf. The paper solves an old conjecture … Continue reading
Test Your Intuition (12): Perturbing a Polytope
Let P be a ddimensional convex polytope. Can we always perturb the vertices of P moving them to points with rational coordinates without changing the combinatorial structure of P? In order words, you require that a set of vertices whose … Continue reading
Posted in Convex polytopes, Test your intuition
Tagged Convex polytopes, Test your intuition
4 Comments
The Polynomial Hirsch Conjecture: Discussion Thread, Continued
Here is a link for the justposted paper Diameter of Polyhedra: The Limits of Abstraction by Freidrich Eisenbrand, Nicolai Hahnle, Sasha Razborov, and Thomas Rothvoss. And here is a link to the paper by Sandeep Koranne and Anand Kulkarni “The dstep Conjecture is Almost true” – … Continue reading
Posted in Convex polytopes, Open discussion, Open problems
Tagged Convex polytopes, Hirsch conjecture
16 Comments
Igor Pak’s “Lectures on Discrete and Polyhedral Geometry”
Here is a link to Igor Pak’s book on Discrete and Polyhedral Geometry (free download) . And here is just the table of contents. It is a wonderful book, full of gems, contains original look on many important directions, things that … Continue reading
Posted in Book review, Convex polytopes, Convexity
Tagged Convex polytopes, Convexity, Igor Pak, rigidity
4 Comments
Five Open Problems Regarding Convex Polytopes
The problems 1. The conjecture A centrally symmetric dpolytope has at least non empty faces. 2. The cubesimplex conjecture For every k there is f(k) so that every dpolytope with has a kdimensional face which is either a simplex … Continue reading