Recent Comments
-
Recent Posts
- Peter Cameron: Doing research
- To cheer you up in difficult times 18: Beautiful drawings by Neta Kalai for my book: “Gina Says”
- Amazing: Simpler and more general proofs for the g-theorem by Stavros Argyrios Papadakis and Vasiliki Petrotou, and by Karim Adiprasito, Stavros Argyrios Papadakis, and Vasiliki Petrotou.
- Igor Pak: What if they are all wrong?
- To cheer you up in difficult times 17: Amazing! The Erdős-Faber-Lovász conjecture (for large n) was proved by Dong Yeap Kang, Tom Kelly, Daniela Kühn, Abhishek Methuku, and Deryk Osthus!
- Open problem session of HUJI-COMBSEM: Problem #5, Gil Kalai – the 3ᵈ problem
- To cheer you up in difficult times 16: Optimism, two quotes
- The Argument Against Quantum Computers – A Very Short Introduction
- Open problem session of HUJI-COMBSEM: Problem #4, Eitan Bachmat: Weighted Statistics for Permutations
Top Posts & Pages
- Peter Cameron: Doing research
- TYI 30: Expected number of Dice throws
- Amazing: Simpler and more general proofs for the g-theorem by Stavros Argyrios Papadakis and Vasiliki Petrotou, and by Karim Adiprasito, Stavros Argyrios Papadakis, and Vasiliki Petrotou.
- Igor Pak: What if they are all wrong?
- Answer: Lord Kelvin, The Age of the Earth, and the Age of the Sun
- The Argument Against Quantum Computers - A Very Short Introduction
- Chomskian Linguistics
- Dan Romik on the Riemann zeta function
- To cheer you up in difficult times 18: Beautiful drawings by Neta Kalai for my book: "Gina Says"
RSS
Tag Archives: Corrine Yap
Recent progress on high dimensional Turan-Type problems by Andrey Kupavskii, Alexandr Polyanskii, István Tomon, and Dmitriy Zakharov and by Jason Long, Bhargav Narayanan, and Corrine Yap.
The extremal number for surfaces Andrey Kupavskii, Alexandr Polyanskii, István Tomon, Dmitriy Zakharov: The extremal number of surfaces Abstract: In 1973, Brown, Erdős and Sós proved that if is a 3-uniform hypergraph on vertices which contains no triangulation of the sphere, then … Continue reading