Recent Comments

Recent Posts
 If Quantum Computers are not Possible Why are Classical Computers Possible?
 Sergiu Hart: TwoVote or not to Vote
 A toast to Alistair: Two Minutes on Two Great Professional Surprises
 TYI 31 – Rados Radoicic’s Rope Problem
 Eran Nevo: gconjecture part 4, Generalizations and Special Cases
 The World of Michael Burt: When Architecture, Mathematics, and Art meet.
 Layish
 Some Mathematical Puzzles that I encountered during my career
 Friendship and Sesame, Maryam and Marina, Israel and Iran
Top Posts & Pages
 If Quantum Computers are not Possible Why are Classical Computers Possible?
 Elchanan Mossel's Amazing Dice Paradox (your answers to TYI 30)
 TYI 30: Expected number of Dice throws
 Answer: Lord Kelvin, The Age of the Earth, and the Age of the Sun
 Sergiu Hart: TwoVote or not to Vote
 The Race to Quantum Technologies and Quantum Computers (Useful Links)
 A Breakthrough by Maryna Viazovska Leading to the Long Awaited Solutions for the Densest Packing Problem in Dimensions 8 and 24
 Friendship and Sesame, Maryam and Marina, Israel and Iran
 Believing that the Earth is Round When it Matters
RSS
Tag Archives: Eran Nevo
Eran Nevo: gconjecture part 4, Generalizations and Special Cases
This is the fourth in a series of posts by Eran Nevo on the gconjecture. Eran’s first post was devoted to the combinatorics of the gconjecture and was followed by a further post by me on the origin of the gconjecture. Eran’s second post was about … Continue reading
Posted in Combinatorics, Convex polytopes, Guest post, Open problems
Tagged Eran Nevo, gconjecture
2 Comments
Convex Polytopes: Seperation, Expansion, Chordality, and Approximations of Smooth Bodies
I am happy to report on two beautiful results on convex polytopes. One disproves an old conjecture of mine and one proves an old conjecture of mine. Loiskekoski and Ziegler: Simple polytopes without small separators. Does LiptonTarjan’s theorem extends to high … Continue reading
Many triangulated threespheres!
The news Eran Nevo and Stedman Wilson have constructed triangulations with n vertices of the 3dimensional sphere! This settled an old problem which stood open for several decades. Here is a link to their paper How many nvertex triangulations does the 3 … Continue reading
Posted in Combinatorics, Convex polytopes, Geometry, Open problems
Tagged Eran Nevo, Stedman Wilson
Leave a comment
Satoshi Murai and Eran Nevo proved the Generalized Lower Bound Conjecture.
Satoshi Murai and Eran Nevo have just proved the 1971 generalized lower bound conjecture of McMullen and Walkup, in their paper On the generalized lower bound conjecture for polytopes and spheres . Let me tell you a little about it. … Continue reading