### Recent Comments

Gil Kalai on To Cheer You Up in Difficult T… Gil Kalai on To Cheer You Up in Difficult T… Alexander Barvinok on To Cheer You Up in Difficult T… Kevin on To Cheer You Up in Difficult T… Gil Kalai on To Cheer You Up in Difficult T… Arseniy on To Cheer You Up in Difficult T… Alexander Barvinok on To Cheer You Up in Difficult T… uniform on To Cheer You Up in Difficult T… Arseniy on To Cheer You Up in Difficult T… normanstresskopf on To Cheer You Up in Difficult T… To Cheer You Up in D… on Beyond the g-conjecture… To Cheer You Up in D… on Euler’s Formula, Fibonac… -
### Recent Posts

- To Cheer You Up in Difficult Times 31: Federico Ardila’s Four Axioms for Cultivating Diversity
- Dream a Little Dream: Quantum Computer Poetry for the Skeptics (Part I, mainly 2019)
- To Cheer you up in difficult times 30: Irit Dinur, Shai Evra, Ron Livne, Alex Lubotzky, and Shahar Mozes Constructed Locally Testable Codes with Constant Rate, Distance, and Locality
- To cheer you up in difficult times 29: Free will, predictability and quantum computers
- Alef’s corner: Mathematical research
- Let me tell you about three of my recent papers
- Mathematical news to cheer you up
- To Cheer You Up in Difficult Times 28: Math On the Beach (Alef’s Corner)
- To cheer you up in difficult times 27: A major recent “Lean” proof verification

### Top Posts & Pages

- To Cheer You Up in Difficult Times 31: Federico Ardila's Four Axioms for Cultivating Diversity
- The Intermediate Value Theorem Applied to Football
- Extremal Combinatorics III: Some Basic Theorems
- Amazing: Karim Adiprasito proved the g-conjecture for spheres!
- Updates and plans III.
- Answer: Lord Kelvin, The Age of the Earth, and the Age of the Sun
- An interview with Noga Alon
- TYI 30: Expected number of Dice throws
- To Cheer you up in difficult times 30: Irit Dinur, Shai Evra, Ron Livne, Alex Lubotzky, and Shahar Mozes Constructed Locally Testable Codes with Constant Rate, Distance, and Locality

### RSS

# Tag Archives: Frankl-Rodl theorem

## The Combinatorics of Cocycles and Borsuk’s Problem.

Cocycles Definition: A -cocycle is a collection of -subsets such that every -set contains an even number of sets in the collection. Alternative definition: Start with a collection of -sets and consider all -sets that contain an odd number of members … Continue reading

## The Cap-Set Problem and Frankl-Rodl Theorem (C)

Update: This is a third of three posts (part I, part II) proposing some extensions of the cap set problem and some connections with the Frankl Rodl theorem. Here is a post presenting the problem on Terry Tao’s blog (March 2007). Here … Continue reading