Recent Comments

Recent Posts
 High Dimensional Combinatorics at the IIAS – Program Starts this Week; My course on Hellytype theorems; A workshop in Sde Boker
 Stan Wagon, TYI 23: Ladies and Gentlemen: The Answer
 Ladies and Gentlemen, Stan Wagon: TYI 32 – A Cake Problem.
 If Quantum Computers are not Possible Why are Classical Computers Possible?
 Sergiu Hart: TwoVote or not to Vote
 A toast to Alistair: Two Minutes on Two Great Professional Surprises
 TYI 31 – Rados Radoicic’s Rope Problem
 Eran Nevo: gconjecture part 4, Generalizations and Special Cases
 The World of Michael Burt: When Architecture, Mathematics, and Art meet.
Top Posts & Pages
 Stan Wagon, TYI 23: Ladies and Gentlemen: The Answer
 High Dimensional Combinatorics at the IIAS  Program Starts this Week; My course on Hellytype theorems; A workshop in Sde Boker
 Ladies and Gentlemen, Stan Wagon: TYI 32  A Cake Problem.
 TYI 30: Expected number of Dice throws
 If Quantum Computers are not Possible Why are Classical Computers Possible?
 Elchanan Mossel's Amazing Dice Paradox (your answers to TYI 30)
 Answer: Lord Kelvin, The Age of the Earth, and the Age of the Sun
 The Race to Quantum Technologies and Quantum Computers (Useful Links)
 Why Quantum Computers Cannot Work: The Movie!
RSS
Tag Archives: gconjecture
Eran Nevo: gconjecture part 4, Generalizations and Special Cases
This is the fourth in a series of posts by Eran Nevo on the gconjecture. Eran’s first post was devoted to the combinatorics of the gconjecture and was followed by a further post by me on the origin of the gconjecture. Eran’s second post was about … Continue reading
Posted in Combinatorics, Convex polytopes, Guest blogger, Open problems
Tagged Eran Nevo, gconjecture
2 Comments
Convex Polytopes: Seperation, Expansion, Chordality, and Approximations of Smooth Bodies
I am happy to report on two beautiful results on convex polytopes. One disproves an old conjecture of mine and one proves an old conjecture of mine. Loiskekoski and Ziegler: Simple polytopes without small separators. Does LiptonTarjan’s theorem extends to high … Continue reading
(Eran Nevo) The gConjecture III: Algebraic Shifting
This is the third in a series of posts by Eran Nevo on the gconjecture. Eran’s first post was devoted to the combinatorics of the gconjecture and was followed by a further post by me on the origin of the gconjecture. … Continue reading
Posted in Combinatorics, Convex polytopes, Guest blogger, Open problems
Tagged gconjecture, Shifting
4 Comments
(Eran Nevo) The gConjecture II: The Commutative Algebra Connection
Richard Stanley This post is authored by Eran Nevo. (It is the second in a series of five posts.) The gconjecture: the commutative algebra connection Let be a triangulation of a dimensional sphere. Stanley’s idea was to associate with a ring … Continue reading
How the gConjecture Came About
This post complements Eran Nevo’s first post on the conjecture 1) Euler’s theorem Euler Euler’s famous formula for the numbers of vertices, edges and faces of a polytope in space is the starting point of many mathematical stories. (Descartes came close … Continue reading
(Eran Nevo) The gConjecture I
This post is authored by Eran Nevo. (It is the first in a series of five posts.) Peter McMullen The gconjecture What are the possible face numbers of triangulations of spheres? There is only one zerodimensional sphere and it consists … Continue reading
Posted in Combinatorics, Convex polytopes, Guest blogger, Open problems
Tagged face rings, gconjecture, Polytopes
8 Comments
Billerafest
I am unable to attend the conference taking place now at Cornell, but I send my warmest greetings to Lou from Jerusalem. The titles and abstracts of the lectures can be found here. Let me tell you about two theorems by Lou. … Continue reading
Posted in Conferences, Convex polytopes
Tagged fvectors, flag vectors, gconjecture, Lou Billera
1 Comment