Recent Comments
-
Recent Posts
- Some News from a Seminar in Cambridge
- Subspace Designs, Unit and Distinct Distances, and Piercing Standard Boxes.
- Greg Kuperberg @ Tel Aviv University
- Israel AGT Day, Reichman University, March 5, 2023
- Alef’s Corner: Democracy (Israel, 2023)
- Absolutely Sensational Morning News – Zander Kelley and Raghu Meka proved Behrend-type bounds for 3APs
- The Trifference Problem
- Greatest Hits 2015-2022, Part II
- Greatest Hits 2015-2022, Part I
Top Posts & Pages
- Some News from a Seminar in Cambridge
- Absolutely Sensational Morning News - Zander Kelley and Raghu Meka proved Behrend-type bounds for 3APs
- Greg Kuperberg @ Tel Aviv University
- Quantum Computers: A Brief Assessment of Progress in the Past Decade
- To cheer you up in difficult times 7: Bloom and Sisask just broke the logarithm barrier for Roth's theorem!
- 'Gina Says'
- Answer: Lord Kelvin, The Age of the Earth, and the Age of the Sun
- R(5,5) ≤ 48
- The Argument Against Quantum Computers - A Very Short Introduction
RSS
Tag Archives: Hirsch conjecture
Karim Adiprasito: Flag simplicial complexes and the non-revisiting path conjecture (A combinatorial proof of the Adiprasito-Benedetti theorem.)
This post is authored by Karim Adiprasito The past months have seen some exciting progress on diameter bounds for polytopes and polytopal complexes, both in the negative and in the positive direction. Jesus de Loera and Steve Klee described simplicial polytopes which are not … Continue reading
Posted in Convex polytopes, Guest blogger
Tagged Convex polytopes, Flag complexes, Hirsch conjecture, Karim Adiprasito
Leave a comment
Polymath3 (PHC6): The Polynomial Hirsch Conjecture – A Topological Approach
This is a new polymath3 research thread. Our aim is to tackle the polynomial Hirsch conjecture which asserts that there is a polynomial upper bound for the diameter of graphs of -dimensional polytopes with facets. Our research so far was … Continue reading
Posted in Convex polytopes, Geometry, Polymath3
Tagged Hirsch conjecture, Polymath3, Topological combinatorics
37 Comments
Polynomial Hirsch Conjecture 5: Abstractions and Counterexamples.
This is the 5th research thread of polymath3 studying the polynomial Hirsch conjecture. As you may remember, we are mainly interested in an abstract form of the problem about families of sets. (And a related version about families of multisets.) The … Continue reading
Polymath3: Polynomial Hirsch Conjecture 4
So where are we? I guess we are trying all sorts of things, and perhaps we should try even more things. I find it very difficult to choose the more promising ideas, directions and comments as Tim Gowers and Terry Tao did so … Continue reading
Posted in Combinatorics, Convex polytopes, Open problems, Polymath3
Tagged Hirsch conjecture, Polymath3
74 Comments
Polymath 3: The Polynomial Hirsch Conjecture 2
Here we start the second research thread about the polynomial Hirsch conjecture. I hope that people will feel as comfortable as possible to offer ideas about the problem. The combinatorial problem looks simple and also everything that we know about it is rather simple: … Continue reading
Posted in Convex polytopes, Open problems, Polymath3
Tagged Hirsch conjecture, Polymath3
104 Comments
Polymath 3: Polynomial Hirsch Conjecture
I would like to start here a research thread of the long-promised Polymath3 on the polynomial Hirsch conjecture. I propose to try to solve the following purely combinatorial problem. Consider t disjoint families of subsets of {1,2,…,n}, . Suppose that … Continue reading
Posted in Convex polytopes, Open problems, Polymath3
Tagged Hirsch conjecture, Polymath3
120 Comments
“A Counterexample to the Hirsch Conjecture,” is Now Out
Francisco (Paco) Santos’s paper “A Counterexample to the Hirsch Conjecture” is now out: For some further information and links to the media see also this page. Here is a link to a TV interview. Abstract: The Hirsch Conjecture (1957) … Continue reading
Plans for polymath3
Polymath3 is planned to study the polynomial Hirsch conjecture. In order not to conflict with Tim Gowers’s next polymath project which I suppose will start around January, I propose that we will start polymath3 in mid April 2010. I plan to write a … Continue reading
The Polynomial Hirsch Conjecture: Discussion Thread, Continued
Here is a link for the just-posted paper Diameter of Polyhedra: The Limits of Abstraction by Freidrich Eisenbrand, Nicolai Hahnle, Sasha Razborov, and Thomas Rothvoss. And here is a link to the paper by Sandeep Koranne and Anand Kulkarni “The d-step Conjecture is Almost true” – … Continue reading
Posted in Convex polytopes, Open discussion, Open problems
Tagged Convex polytopes, Hirsch conjecture
16 Comments
The Polynomial Hirsch Conjecture: Discussion Thread
This post is devoted to the polymath-proposal about the polynomial Hirsch conjecture. My intention is to start here a discussion thread on the problem and related problems. (Perhaps identifying further interesting related problems and research directions.) Earlier posts are: The polynomial Hirsch … Continue reading
Posted in Convex polytopes, Open discussion, Open problems
Tagged Hirsch conjecture, Polytopes
115 Comments