### Recent Comments

dinostraurio on Seven Problems Around Tverberg… Matthew Cory on The Quantum Computer Puzzle @… Matthew Cory on The Quantum Computer Puzzle @… The Quantum Computer… on A Breakthrough by Maryna Viazo… The Quantum Computer… on Stefan Steinerberger: The Ulam… The Quantum Computer… on Polymath10-post 4: Back to the… Philip Gibbs on Stefan Steinerberger: The Ulam… Philip Gibbs on Stefan Steinerberger: The Ulam… Daniel on Stefan Steinerberger: The Ulam… Philip Gibbs on Stefan Steinerberger: The Ulam… Gil Kalai on Stefan Steinerberger: The Ulam… Gabriel Nivasch on Stefan Steinerberger: The Ulam… -
### Recent Posts

- The Erdős Szekeres polygon problem – Solved asymptotically by Andrew Suk.
- The Quantum Computer Puzzle @ Notices of the AMS
- Three Conferences: Joel Spencer, April 29-30, Courant; Joel Hass May 20-22, Berkeley, Jean Bourgain May 21-24, IAS, Princeton
- Math and Physics Activities at HUJI
- Stefan Steinerberger: The Ulam Sequence
- TYI 26: Attaining the Maximum
- A Breakthrough by Maryna Viazovska Leading to the Long Awaited Solutions for the Densest Packing Problem in Dimensions 8 and 24
- Polymath10-post 4: Back to the drawing board?
- News (mainly polymath related)

### Top Posts & Pages

- The Erdős Szekeres polygon problem - Solved asymptotically by Andrew Suk.
- A Breakthrough by Maryna Viazovska Leading to the Long Awaited Solutions for the Densest Packing Problem in Dimensions 8 and 24
- The Quantum Computer Puzzle @ Notices of the AMS
- Why Quantum Computers Cannot Work: The Movie!
- Answer: Lord Kelvin, The Age of the Earth, and the Age of the Sun
- Can Category Theory Serve as the Foundation of Mathematics?
- Polymath10: The Erdos Rado Delta System Conjecture
- Polymath10-post 4: Back to the drawing board?
- Rodica Simion: Immigrant Complex

### RSS

# Tag Archives: Hirsch conjecture

## The Polynomial Hirsch Conjecture – How to Improve the Upper Bounds.

I can see three main avenues toward making progress on the Polynomial Hirsch conjecture. One direction is trying to improve the upper bounds, for example, by looking at the current proof and trying to see if it is wasteful and if so where … Continue reading

Posted in Convex polytopes, Open discussion, Open problems
Tagged Discussion, Hirsch conjecture
14 Comments

## The Polynomial Hirsch Conjecture, a Proposal for Polymath3 (Cont.)

The Abstract Polynomial Hirsch Conjecture A convex polytope is the convex hull of a finite set of points in a real vector space. A polytope can be described as the intersection of a finite number of closed halfspaces. Polytopes have … Continue reading

Posted in Convex polytopes, Open discussion, Open problems
Tagged Hirsch conjecture, Polymath proposals
5 Comments

## The Polynomial Hirsch Conjecture: A proposal for Polymath3

This post is continued here. Eddie Kim and Francisco Santos have just uploaded a survey article on the Hirsch Conjecture. The Hirsch conjecture: The graph of a d-polytope with n vertices facets has diameter at most n-d. We devoted several … Continue reading

## A Diameter problem (7): The Best Known Bound

Our Diameter problem for families of sets Consider a family of subsets of size d of the set N={1,2,…,n}. Associate to a graph as follows: The vertices of are simply the sets in . Two vertices and are adjacent if . … Continue reading

## A Diameter Problem (6): Abstract Objective Functions

George Dantzig and Leonid Khachyan In this part we will not progress on the diameter problem that we discussed in the earlier posts but will rather describe a closely related problem for directed graphs associated with ordered families of sets. The role models for … Continue reading

Posted in Combinatorics, Convex polytopes, Open problems
Tagged Hirsch conjecture, Linear programming
7 Comments

## A Diameter Problem (5)

6. First subexponential bounds. Proposition 1: How to prove it: This is easy to prove: Given two sets and in our family , we first find a path of the form where, and . We let with and consider the family … Continue reading

## Diameter Problem (4)

Let us consider another strategy to deal with our diameter problem. Let us try to associate other graphs to our family of sets. Recall that we consider a family of subsets of size of the set . Let us now associate … Continue reading

## Diameter Problem (3)

3. What we will do in this post and and in future posts We will now try all sorts of ideas to give good upper bounds for the abstract diameter problem that we described. As we explained, such bounds apply … Continue reading

Posted in Combinatorics, Convex polytopes, Open problems
Tagged Hirsch conjecture, Linear programming, Quasi-automated proofs
1 Comment