This post collects some brief philosophical thoughts about mathematics that appeared as part of my paper “Combinatorics with a geometric flavor: some examples,” from the proceedings of the conference “Vision in Mathematics, towards 2000.” I added two small items (the first and fifth).

## 1. Mathematical truths – theorems.

“There are infinitely many primes;” “The three angles of a triangle add up to 180 degrees;” “A continuous real function defined in a closed interval attains there its maximum;” “A non-constant polynomial over the complex numbers has a solution;” If you substitute a matrix A in its characteristic polynomial you get zero;” “A simply connected closed 3-dimensional manifold is homeomorphic to a sphere.”

These truths appear very different from truths in other areas of life. This sharp difference is the secret to some of the successes of mathematics and explains also its limitation.

What makes a mathematical theorem important, deep, or central?

## 2. Proofs, more proofs, “proofs from the book” and computer proofs

Science has a dual role: exploring and explaining. In mathematics, unlike other sciences, mathematical proofs are used as the basic tool for both tasks: to explore mathematical facts and to explain them.

The meaning of a mathematical proof is quite stable. It seems unharmed by the “foundation crisis” and the incompleteness results in the beginning of the 20th century, and unaffected by the recent notions of randomized and interactive proofs in theoretical computer science. Still, long and complicated proofs,

as well as computerized proofs, raise questions about the nature of mathematical explanations.

Proofs are gradually becoming intolerably difficult. This may suggest that soon our days of successfully tackling a large percentage of the problems we pose are over. Also, this may reflect the small incentives to simplify.

Be that as it may, we cannot be satisfied without repeatedly finding new connections and new proofs, and we should not give up hope to find simple and illuminating proofs that can be presented in the classroom. Continue reading