Tag Archives: Noise

Influence, Threshold, and Noise

 

poster4.1

My dear friend Itai Benjamini told me that he won’t be able to make it to my Tuesday talk on influence, threshold, and noise, and asked if I already have  the slides. So it occurred to me that perhaps I can practice the lecture on you, my readers, not just with the slides (here they are) but also roughly what I plan to say, some additional info, and some pedagogical hesitations. Of course, remarks can be very helpful.

I can also briefly report that there are plenty of exciting things happening around that I would love to report about – hopefully later in my travel-free summer. One more thing: while chatting with Yuval Rabani and Daniel Spielman I realized that there are various exciting things happening in algorithms (and not reported so much in blogs). Much progress has been made on basic questions: TSP, Bin Packing, flows & bipartite matching, market equilibria, and k-servers, to mention a few, and also new directions and methods. I am happy to announce that Yuval kindly agreed to write here an algorithmic column from time to time, and Daniel is considering contributing a guest post as well.

The second AMS-IMU meeting

Since the early 70s, I have been a devoted participants in our annual meetings of the Israeli Mathematical Union (IMU), and this year we will have the second joint meeting with the American Mathematical Society (AMS). Here is the program. There are many exciting lectures. Let me mention that Eran Nevo, this year Erdős’ prize winner, will give a lecture about the g-conjecture. Congratulations, Eran! Among the 22 exciting special sessions there are a few related to combinatorics, and even one organized by me on Wednsday and Thursday.

Combinatorics
Contact person: Gil Kalai, gil.kalai@gmail.com
TAU, Dan David building, Room 103
 Wed, 10:50-11:30 Van H. Vu (Yale University) Real roots of random polynomials (abstract)
Wed, 11:40-12:20 Oriol Serra (Universitat Politecnica de Catalunya, Barcelona)  Arithmetic Removal Lemmas (abstract)
 Wed, 12:30-13:10 Tali Kaufman (Bar-Ilan University)  Bounded degree high dimensional expanders (abstract)
 Wed, 16:00-16:40 Rom Pinchasi (Technion)  On the union of arithmetic progressions (abstract)
Wed, 16:50-17:30  Isabella Novik (University of Washington, Seattle) Face numbers of balanced spheres, manifolds, and pseudomanifolds (abstract)
 Wed, 17:40-18:20 Edward Scheinerman (Johns Hopkins University, Baltimore) On Vertex, Edge, and Vertex-Edge Random Graphs (abstract)
 Thu, 9:20-10:00 Yael Tauman Kalai (MSR, New England) The Evolution of Proofs in Computer Science (abstract)
 Thu, 10:10-10:50  Irit Dinur (Weitzman Institute)  Lifting locally consistent solutions to global solutions (abstract)
 Thu, 11:00-11:40 Benny Sudakov (ETH, Zurich) The minimum number of nonnegative edges in hypergraphs (abstract)

 

And now for my own lecture.

Influence, Threshold, and Noise:

Continue reading

BosonSampling and (BKS) Noise Sensitivity

Update (Nov 2014): Noise sensitivity of BosonSampling and computational complexity of noisy BosonSampling are studied in this paper by Guy Kindler and me. Some of my predictions from this post turned out to be false. In particular the noisy BosonSampling is not  flat and it does depend on the input matrix.  However when the noise level is a constant BosonSampling is in P, and when it is above 1 over the number of bosons, we cannot expect robust experimental outcomes.

 

—–

 

Following are some preliminary observations connecting BosonSampling, an interesting  computational task that quantum computers can perform (that we discussed in this post), and noise-sensitivity in the sense of Benjamini, Schramm, and myself (that we discussed here and here.)

BosonSampling and computational-complexity hierarchy-collapse

Suppose that you start with n bosons each can have m locations. The i-th boson is in superposition and occupies the j-th location with complex weight a_{ij}. The bosons are indistinguishable which makes the weight for a certain occupation pattern proportional to the permanent of a certain n by n submatrix of the n by m matrix of weights.

Boson Sampling is a task that a quantum computer can perform. As a matter of fact, it only requires a “boson machine” which represents only a fragment of quantum computation. A boson machine is a quantum computer which only manipulates indistinguishable bosons with gated described by phaseshifters and beamsplitters.

BosonSampling and boson machines were studied in a recent paper The Computational Complexity of Linear Optics of Scott Aaronson and Alex Arkhipov (AA). They proved (Theorem 1 in the paper) that if (exact) BosonSampling can be performed by a classical computer then this implies a collapse of the computational-complexity polynomial hierarchy (PH, for short). This result adds to a similar result achieved independently by Michael J. Bremner, Richard Jozsa, and Dan J. Shepherd (BJS) in the paper entitled: “Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy,” and to older results by  Barbara Terhal and David DiVincenzo (TD) in the paper Adaptive quantum computation, constant depth quantum circuits and Arthur-Merlin games, Quant. Inf. Comp. 4, 134-145 (2004).

Since universal quantum computers can achieve BosonSampling (and the other related computational tasks considered by TD and BJS), this is a very strong indication for the computational complexity advantage of quantum computers which arguably brings us with quantum computers to the “cozy neighborhood” of NP-hardness.

Noisy quantum computers with quantum fault-tolerance are also capable of exact BosonSampling and this strong computational-complexity quantum-superiority applies to them as well.

Realistic BosonSampling and Gaussian Permanent Estimation (GPE)

Aaronson an Arkhipov considered the following question that they referred to as Gaussian Permanent Approximation.

Problem (Problem 2 from AA’s paper): (|GPE|_{\pm}^2): Given as imput a matrix {\cal N}(0,1)_{\bf C}^{n \times n} of i.i.d Gaussians,together with error bounds ε, δ > o, estimate to within additive error \pm \epsilon n! with probability at leat 1-δ over X, in poly(n,1/\epsilon,1/\delta) time.

They conjectured that such Gaussian Permanent Approximation is computationally hard and showed (Theorem 3) that this would imply that sampling w.r.t. states achievable by boson machines cannot even be approximated by classical computing (unless PH collapses). They regarded questions about approximation more realistic in the context of decoherence where we cannot expect exact sampling.

Scott Aaronson also expressed guarded optimism that even without quantum fault-tolerance BosonSampling can be demonstrated by boson machines for 20-30 bosons, leading to strong experimental evidence for computational advantage of quantum computers (or, if you wish, against the efficient Church-Turing thesis).

Is it so?

More realistic BosonSampling and Noisy Gaussian Permanent Estimation (NGPE)

Let us consider the following variation that we refer to as Noisy Gaussian Permanent Estimation:

Problem 2′: (|NGPE|_{\pm}^2): Given as imput a matrix M= {\cal N}(0,1)_{\bf C}^{n \times n} of i.i.d Gaussians, and a parameter t>0 let NPER (M),  be the expected value of the permanent for \sqrt {1-t^2}M+E where E= {\cal N}(0,t)_{\bf C}^{n \times n}.  Given the input matrix M together with error bounds ε, δ > o, estimate NPER(M) to within additive error \pm \epsilon n! with probability at leat 1-δ over X, in poly(n,1/\epsilon,1/\delta) time.

Problem 2′ seems more relevant for noisy boson machines (without fault-tolerance). The noisy state of the computer is based on every single boson  being slightly mixed, and the permanent computation will average these individual mixtures. We can consider the relevant value for t to be a small constant. Can we expect Problem 2′ to be hard?

The answer for Question 2′ is surprising. I expect that even when t is very very tiny, namely t=n^{-\beta} for \beta <1, the expected value of NPER(M) (essentially) does not depend at all on M!

Noise Sensitivity a la Benjamini, Kalai and Schramm

Noise sensitivity for the sense described here for Boolean functions was studied in a paper by Benjamini Schramm and me in 1999.  (A related notion was studied by Tsirelson and Vershik.) Lectures on noise sensitivity and percolation is a new beautiful monograph by Christophe Garban and Jeff Steif which contains a description of noise sensitivity. The setting extends easily to the Gaussian case. See this paper by Kindler and O’donnell for the Gaussian case. In 2007, Ofer Zeituni and I studied the noise sensitivity in the Gaussian model of the maximal eigenvalue of random Gaussian matrices (but did not write it up).

NS

Noise sensitivity depends on the degree of the support of the Fourier expansion. For determinants or permanents of an n by n matrices the basic formulas as sums of generalized diagonals describe the Fourier expansion,  so the Fourier coefficients are supported on degree-n monomials. This implies that the determinant and the permanent are very noise sensitive.

Noisy Gaussian Permanent Estimation is easy

Noisy Gaussian Permanent Estimation is easy, even for very small amount of noise, because the outcome does not depend at all on the input. It is an interesting question what is the hardness of NGPE is when the noise is below the level of noise sensitivity.

Update (March, 2014) Exploring the connection between BosonSampling and BKS-noise sensitivity shows that the picture drawn here is incorrect. Indeed, the square of the permanent is not noise stable even when the noise is fairly small and this shows that the noisy distribution does not approximate the noiseless distribution. However the noisy distribution does depend on the input!

 

AA’s protocol and experimental BosonSampling

Scott and Alex proposed a simple experiment described as follows : “An important motivation for our results is that they immediately suggest a linear-optics experiment, which would use simple optical elements (beamsplitters and phaseshifters) to induce a Haar-random m \times m unitary transformation U on an input state of n photons, and would then check that the probabilities of various final states of the photons correspond to the permanents of n \times n submatrices, as predicted by quantum mechanics.”

Recently, four groups carried out interesting BosonSampling experiments with 3 bosons (thus for permanents of 3 by 3 matrices.) (See this post on Scott’s blog.)

BKS-noise sensitivity is giving  simple predictions on how things will behave as a function of the number of bosons and this can be tested even with experiments with very small number of bosons. When you increase the number of bosons the distribution will quickly become uniform for the various final states. The correlation between the probabilities and the value corresponding to permanents will rapidly go to zero.

Some follow-up questions

Here are a few interesting questions that deserve further study.

1) Does problem 2′ capture the general behavior of noisy boson machines? To what generality noise sensitivity applies for general functions described by Boson sampling distributions?

(There are several versions for photons-based quantum computers including even an important  model by Knill, Laflamme, and Milburn that support universal quantum computation. The relevance of BKS noise-sensitivity should be explored carefully for the various versions.)

2) Is the connection with noise sensitivity relevant to the possibility to have boson machines with fault tolerance?

3) What is the Gaussian-quantum analog for BKS’s theorem asserting that noise sensitivity is the law unless  we have substantial correlation with the majority function?

4) What can be said about noise-sensitivity of measurements for other quantum codes?

A few more remarks:

More regarding noisy boson machines and quantum fault tolerance

Noisy boson machines and BosonSampling are related to various other issues regarding quantum fault-tolerance. See my added recent remarks (about the issue of synchronization, and possible modeling using smoothed Lindblad evolutions) to my old post on AA’s work.

Noise sensitivity and the special role of the majority function

bks

The main result of Itai, Oded, and me was that a Boolean function which is not noise sensitive must have a substantial correlation with the majority function. Noise sensitivity and the special role of majority for it gave me some motivation to look at quantum fault-tolerance in 2005  (see also this post,) and this is briefly discussed in my first paper on the subject, but until now I didn’t find an actual connection between quantum fault-tolerance and BKS-noise-sensitivity.

Censorship

It is an interesting question which bosonic states are realistic, and it came up in some of my papers and in the discussion with Aram Harrow and Steve Flammia (and their paper on my “Conjecture C”).

A sort of conclusion

BosonSampling was offered as a way to prove that quantum mechanics allows a computational advantage without using the computational advantage for actual algorithmic purpose. If you wish, the AA’s protocol is offered as a sort of zero-knowledge proof that the efficient Church-Turing thesis is false.  It is a beautiful idea that attracted interest and good subsequent work from theoreticians and experimentalists. If the ideas described here are correct, BosonSampling and boson machines may give a clear understanding based on BKS noise-sensitivity for why quantum mechanics does not offer computational superiority (at least not without the magic of quantum fault-tolerance).

Avi’s joke and common sense

Here is a quote from AA referring to a joke by Avi Wigderson: “Besides bosons, the other basic particles in the universe are fermions; these include matter particles such as quarks and electrons. Remarkably, the amplitudes for n-fermion processes are given not by permanents but by determinants of n×n matrices. Despite the similarity of their definitions, it is well-known that the permanent and determinant differ dramatically in their computational properties; the former is #P-complete while the latter is in P. In a lecture in 2000, Wigderson called attention to this striking connection between the boson and fermion dichotomy of physics and the permanent-determinant dichotomy of computer science. He joked that, between bosons and fermions, ‘the bosons got the harder job.’ One could view this paper as a formalization of Wigderson’s joke.”

While sharing the admiration to Avi in general and Avi’s jokes in particular, if we do want to take Avi’s joke seriously (as we always should), then the common-sense approach would be first to try to understand why is it that nature treats bosons and fermions quite equally and the dramatic computational distinction is not manifested at all. The answer is that a crucial ingredient for a computational model is the modeling of noise/errors, and that noise-sensitivity makes bosons and fermions quite similar physically and computationally.

Eigenvalues, determinants, and Yuval Filmus

It is an interesting question (that I asked over Mathoverflow) to understand the Fourier expansion of the set of eigenvalues, the maximum eigenvalue and related functions. At a later point,  last May,  I was curious about the Fourier expansion of the determinant, and for the Boolean case I noticed remarkable properties of its Fourier expansion. So I decided to ask Yuval Filmus about it:

Dear Yuval

 I am curious about the following. Let D be the function defined on {-1,1}^n^2
which associates to every +1/1 matrix its determinant.
What can be said about the Fourier transform of D? It looks to me that easy arguments shows that the Fourier transform is supported only on subsets of the entries
so that in every raw and columns there are odd number of entries. Likely there are even further restrictions that I would be interested to explore.
Do you know anything about it?
best Gil

Yuval’s answer came a couple of hours later like a cold shower:

Hi Gil,

The determinant is a sum of products of generalized diagonals.
Each generalized diagonal is just a Fourier character, and they are all different.

In other words, the usual formula for the determinant *is* its Fourier transform

This reminded me of a lovely story of how I introduced Moni Naor to himself that I should tell sometime.

What else can a quantum computer sample?

The ability of quantum computers to sample (exactly) random complex Gaussian matrices according to the value of their permanents is truly amazing! If you are not too impressed by efficient factoring but still do not believe that QC can reach the neighborhood of NP-hard problems you may find this possibility too good to be true.

I am curious if sharp P reductions give us further results of this nature. For example,  can a QC sample random 3-SAT formulas (by a uniform distribution or by a certain other distribution coming from sharp-P reductions) according to the number of their satisfying assignments?

Can QC sample integer polytopes by their volume or by the number of integer points in them? Graphs by the number of 4-colorings?

Symplectic Geometry, Quantization, and Quantum Noise

Over the last two meetings of our HU quantum computation seminar we heard two talks about symplectic geometry and its relations to quantum mechanics and quantum noise.

Yael Karshon: Manifolds, symplectic manifolds, Newtonian mechanics, quantization, and the non squeezing theorem.

yaelkarshon

The first informal lecture by Yael Karshon gave an introduction to the notions of manifolds and symplectic manifolds. Yael described the connection with Newtonian physics, gave the example of symplectic structure on phase spaces coming from physics, and talked about dynamics and physical laws. She also gave other examples of symplectic manifolds. The 2-dimensional sphere S^2 is an important example, and also complex projective manifolds are symplectic.

Quantization

Now, if symplectic geometry describes Newtonian mechanics how should we move to describe quantum mechanics?  Yael talked a little about quantization, described an impossibility theorem by Groenweld and Van Hove for certain general types of quantization, and mentioned a few ways around it. (More details at the end of this post.)

Non squeezing, symplectic camels and uncertainty.

Yael concluded with Gromov’s non-squeezing theorem. This theorem asserts that a ball of radius R cannot be “squeezed” by a symplectic map to a cylinder whose base is a circle of radius r,  for R > r. Yael mentioned that Gromov’s non squeezing theorem can be regarded as a classical manifestation of the uncertainty principle from quantum mechanics. (The Wikipedia article gives a nice description of the theorem,  mention the metaphor of  passing a symplectic camel through the eye of a needle, and notes the connection with the uncertainty principle.)

Leonid Polterovich: Geometry of Poisson Brackets and Quantum Unsharpness

Polterovich

A week later Leonid Polterovich gave a lecture entitled “Geometry of Poisson brackets and quantum unsharpness.” (Here are the slides Update: here is a video of a related lecture in QStart). Leonid reviewed the notion of symplectic manifolds, and gave a vivid explanation, based on areas of parallelograms, of how to think about a symplectic form.  Then he defined a displaceable set (a notion introduced by Helmut Hofer) in a symplectic manifold. This is a set X such that you can find a Hamiltonian diffeomorphism so that the image of X is disjoint from X. On S^2 small discs are displaceable but the equator is not!

Poisson brackets and the fiber theorem

Another crucial ingredient in the lecture was the notion of Poisson brackets which measure non-commutativity of Hamiltonian flow. Leonid continued to describe the Polterovich-Entov “non displaceable fiber theorem,” which asserts that if you have a function from a compact symplectic manifold to R^n described by n real functions whose pairwise Poisson brackets vanish, then there is a point whose pre-image is not displaceable.

Partition of unity, classical registration, and cell phones.

A partition of unity is a collection of non-negative valued real functions that sum up to 1. Suppose we are given an open cover \cal U of M by n sets and ask if there exists a partition of unity 1=f_1+f_2+\dots f_n such that f_i is supported on U_i and all Poisson brackets {f_i,f_j} vanish.  Next comes a theorem of Entov Polterovich and Zapolsky which asserts that this is not possible for covers with small sets, namely, if all sets are displaceable.  In fact, the theorem gives a quantitative relation between how small the sets in the cover are and a “measure of non-commutativity” for any partition of unity that respects this open cover.  Both the proof and the interpretations of this theorem have strong relations to quantum mechanics. This was the next topic in Leonid’s lecture. Leonid gave us a choice between ideas of QM playing a role in the proof and QM interpretation of the result and connections to quantum noise. In the end he talked about both topics.

Before going quantum, note that if the sets in the cover represent areas covered by an antenna for cell phones, you can ask how to register cellphones to antennas and regard the partition of unity as a probabilistic recipe.

Quantum mechanics,  The correspondence principle

Enters quantum mechanics. Here is a dictionary

LP1

The correspondence principle in physics states that the behavior of systems described by the theory of quantum mechanics reproduces classical physics in the limit.

POVMs and projector valued POVMs (von-Neumann observables).

Leonid talked about two notions of observables. The more general one is based on positive operator valued measures (briefly – POVM’s). The more special one is von-Neumann observables which are special cases of POVM’s (called projector valued POVM’s). POVM’s on the quantum side are analogs of partition of unity on the classic side, and they lead to a sort of “quantum registration.” (This is the familiar probabilistic aspect of quantum measurement.)

Quantum noise, non-commutativity and the unsharpness principle

Following Ozawa, and Busch-Heinonen-Lahti,  Leonid described a notion of “systematic quantum noise” and described a lower bound referred to as an “unsharpness principle” (Janssens 2006, Miyadera-Imai, 2008, and Polterovich 2012)  of the systematic noise in terms of non commutativity of the components of the POVM. Quantum noise, in this context, refers only to measurements, and systematic quantum noise describes the extent to which POVM’s are not von-Neumann observables.

An unsharpness principle for Berezin-Toeplitz quantization

Leonid described next the unsharpness principle based on the Berezin-Toeplitz quantization of a symplectic manifold. In this case we can talk about a POVM which corresponds to an open cover of the manifold by small sets. The conclusion is that these POVMs cannot be too close to  projector-valued POVM’s. The proof relies on the theorem of Entov-Polterovich-Zapolsky, the (difficult) correspondence principles for the quantization, and the linear-algebraic unsharpness principle for POVM’s. (I will give some more details below.)

Links to Leonid’s papers

Here are links to Leonid’s papers on quantum noise:  Quantum unsharpness and symplectic rigidity and Symplectic geometry of quantum noise.

Grete Hermann

Grete_Hermann

Leonid briefly mentioned in his lecture the name of Grete Hermann. She was a German mathematician and philosopher, who is famous for her early work on the foundations of quantum mechanics and  early criticism of  the no-hidden-variable theorem by John von Neumann. Here is an English translation of her 1935 paper: The foundations of quantum mechanics in the philosophy of nature.  At age 26 Hermann finished her Ph. D. in mathematics with Emmy Noether. In the 30s she participated in an underground movement against the Nazis and lived in exile from 1936 until 1946.

Symplecticism and skepticism: possible relations with my work

As some of you may know I am quite interested in quantum noise and quantum fault-tolerance. My work is about properties and models of quantum noise which do not enable quantum fault tolerance believed to be crucial for building quantum computers. (Here are slides from a recent talk.) Ultimately, the hope is to use the theory of quantum error-correction and quantum fault-tolerance to describe principles of quantum noise which do not enable computational superior devices based on quantum physics.

Leonid and I were surprised to discover that we are both interested in quantum noise, and some of the statements we made look linguistically similar. For example, we both talk about a certain “hard-core” noisy kernel that cannot be avoided, and relate it to measures of non-commutativity. Leonid talks about “smearing” while I talk about “smoothing,” etc.

Yet, there are also clear differences. The unsharpness principle talks about noisy measurements and not about noisy approximations to unitary evolutions or to pure states which are what my work is mainly about.

Yet again, there may be ways to reconcile these differences. Ideal quantum computer evolutions induce non-unitary operations on parts of the quantum memory, even when it comes to two qubits. (And I am quite interested in the case of two qubits.) Beside that, quantum fault-tolerance is based fundamentally on non-unitary evolutions. Another interesting question is to see if my “smoothed Linblad evolutions” which are obtained from an arbitrary noisy evolution by adding a certain “smoothing” in time satisfy the unsharpness principle. And another interesting question is to see if physics-models of noisy quantum computers like the ones proposed by Aharonov-Kitaev-Preskill, and Preskill do obey the unsharpness principle.

It will be interesting to explore connections between Leonid’s work and mine. The notion of a quantum computer abstracts away the geometry and much of the physics and this is also the case for models of noisy quantum computers – both the standard ones and mine. The same is true for classical computers – classical computers can be used to describe classical physics but the laws of physics do not emerge from Turing machines or Boolean circuits. In the quantum and classical cases alike, more structure is needed.  So in order to check my conjectures on the behavior of noisy quantum systems we either need to study very specific proposed implementations of quantum computers or other specific noisy quantum systems, or to consider some middle ground that manifests the physics. Symplectic geometry can give a useful such middle ground.

Other relations with quantum information and quantum computation

Yet again once more, it looks like the connection of symplectic geometry, quantization and noise with the theory of quantum information and computation need not be restricted to my little skeptical corner. Useful ideas and examples can flow in both directions and involve mainstream quantum computation. The symplectic angle is certainly a good thing to be aware of and explore (and for me it will probably be a slow process).

A few more details on quantization in symplectic geometry as explained by Yael Karshon.

The challenge is to associate to every symplectic manifold  M a Hilbert space  H  and to every real valued smooth function on  M a self-adjoint operator  on  H such that

  1.  Linear combinations of functions go to linear combinations of operators,
  2.  Poisson brackets of functions go to  i  times  the commutator of operators,
  3.  the function  1  goes to the identity operator,  and
  4.  a “complete” family of functions passes to a “complete” family of operators.

The axioms (1)-(4) are attributed to Dirac. In (4), a family of functions is “complete” if it separates points almost everywhere and a family of operators is “complete” if it acts irreducibly.  (There may be variations in these definitions. Some people require more, e.g., that the powers of a function be mapped to the powers of the corresponding operator.)

“No go theorems” say that there does not exist a correspondence (that is nontrivial in some sense) that satisfies the properties (1)-(4). A “no go theorem” for  M = R^{2n} was given by Groenweld and Van Hove. Later “no go theorems” were also found for some compact symplectic manifolds. The 1996 review paper “Obstruction results in quantization theory”, by Gotay, Grundling, and Tuynman, should be relevant.

The first step in Geometric Quantization, which is called Prequantization, more or less achieves (1), (2), (3) but fails at (4). One compromise is to define the correspondence not for all smooth functions, but, rather, to restrict it to a sub-Poisson-algebra of the smooth functions. With this compromise, Geometric quantization can achieve (1)-(4). (But it depends on a choice of a so-called “polarization”.  Often different choices give isomorphic answers but this is only partially understood.)

Other methods of quantization involve asymptotic in h-bar. This means that the desired correspondence is demonstrated in the limit with respect to some parameter regarded as 1 over the Planck constant.  One of these is the Berezin-Toeplitz quantization that Leonid works with. Another is Deformation Quantization.

Berezin-Toeplitz quantization, smearing,  coherent noise, and quasi-states as further explained by Leonid Polterovich

Berezin-Toeplitz quantization

Berezin-Toeplitz quantization is a procedure to move from a symplectic manifold M to a sequence of Hilbert spaces which satisfy in the limit (when m tends to infinity) the quantization requirements. Leonid did not explain the construction in the lecture but later explained to Dorit Aharonov, Guy Kindler, and me how it works for the special case where    M is a Cartesian product of n copies of S^2. Very roughly you associate to each S^2 an m-dimensional Hilbert space and let m tend to infinity. The proofs of the correspondence principle: namely, the relation between commutators and Poisson brackets when m tends to infinity involve deep and difficult mathematics, with certain shortcuts when the symplectic manifolds have the extra structure of a “Kahler manifold.” While the main interest in the literature is for the case that m tends to infinity, for us, the case m=2 is quite interesting as it relates unitary evolution on an n-qubit quantum computer with Hamiltonian evolution on a Cartesian product of 2-spheres.

Quantum registration, smearing, unsmearing and coherent noise

POVMs can be used to describe a quantum registration rule analogous to the classical probabilistic rule based on partition of unity. Leonid described a statistical smearing operation on POMVs that increases noise. He asked to what extent we can denoise using unsmearing, and proved that, in certain circumstances, a certain amount of “inherent noise” persistent under unsmearing must remain.

Quantum and symplectic quasi-states

The lecture mentioned briefly another interesting aspect of the classical-quantum correspondence through symplectic geometry. Gleason proved in 1957 that for Hilbert spaces of dimension 3 or more every “quasi-state” is a state.  (Quasi states are defined based on linearity requirement just when the observables are commuting.) Non linear symplectic “quasi-states” do exist and this is related to deep developments in symplectic geometry. Leonid’s talk shows that quasi-states provided by symplectic geometry vanish on functions with dispaceable (“small”) supports. This readily rules out existence of Poisson commuting partitions of unity with displaceable supports.)

More

Happy new year, everybody!

A planned “Kazhdan’s seminar” spring 2014.

In 2003/2004 David Kazhdan and I ran a seminar on polytopes, toric varieties, and related combinatorics and algebra. (A lot has happened since and this spring Sam Payne and I will give together a course at Yale on similar topics this spring. There will be a separate post about it.) David and I felt that it is time to run another such event in 2014, perhaps establishing a tradition for a decennial joint seminar. So next spring, the plan is that David with me and Leonid and hopefully also Michael and Dorit will devote one of David’s Sunday seminars to computation, quantumness, symplectic geometry, and information.

A 1965 letter by Richard Palais

In a widely circulated but unpublished letter in 1965, Richard Palais explained the symplectic formulation of Hamiltonian mechanics. See this MO question.

Small and large in mathematics

Different notions of “small” and “large” and the tension between them are quite important in many areas of mathematics. Of course, sets of measure zero, sets of Baire-category one, sets of lower dimensions, subsets of smaller (infinite) cardinality, come to mind. In the symplectic context displaceable sets are small: note that the lower-dimensional equator is symplectically “large” while caps with positive area are “small.”

Let me remind myself that I should attempt to blog some time about deep recent results on “null-sets” in Eucledian spaces connected also to combinatorics. (Meanwhile, here are links to two papers by  Alberti, Csörnyei, and Preiss, Structure of null sets in the plane and applications, and Differentiability of Lipschitz functions, structure of null sets, and other problems.)

Trivia question

In theoretical computer science, what do the terms “Yaelism” and “Adamology” refer to?

Camels and elephants through the eye of a needle

The term “symplectic camel” refers to a quote of Jesus: “It is easier for a camel to pass through the eye of a needle than for a rich man to enter heaven.” (I learned about it when it was used in Aram Harrow’s reply in one part of our quantum debate, See also this post on The Quantum Pontiff ) A nice discussion of this phrase can be found here. The Jewish analog (from the Talmud) is about passing an elephant through the eye of a needle which is used to describe making convoluted arguments which have no basis in reality, attributed to the scholars of Pompeditha. Rabbi Shesheth answered Rabbi Amram “Maybe you are from the school at Pumbeditha, where they can make an elephant pass through the eye of a needle.”

Greg Kuperberg referred in this context to:  Rowan Atkinson – Conservative Conferencecamel

“It is easier for a rich man to pass through the eye of a needle than…for a camel to!”

An additional clarification on symplectic camels by Yael

Gromov Nonsqueezing and the Symplectic Camel Theorem are two different theorems.  (The Wikipedia article is unclear about this.) The Symplectic Camel theorem says this. Take  R^{2n}, say, with coordinates  x_i,y_i. Remove the hyperplane y_n=0  minus a ball of radius r   in this hyperplane.

Thus, we get two “rooms” separated by a “wall” but with a “hole” in the wall.  If  R<r  then a ball of radius  R  that lies entirely in the “left room”   y_n < 0  can be continuously translated through the “hole” into the “right room”  y_n > 0. If  R>r  we cannot move the ball to the “right room” continuously by translations nor rigid transformations but we can move it through volume preserving transformations (by first squishing it so it becomes long and narrow).  The theorem says that we cannot do this symplectically: if  R > r  then there is no path of symplectic embeddings of the ball of radius  R   that starts with an embedding into  y_n < 0  and ends with an embedding into  y_n > 0. (An interesting open question is whether there exists a “compact camel“: a compact symplectic manifold in which the space of symplectic embeddings of a ball of some fixed radius   R  into the manifold is disconnected.)

When It Rains It Pours

After our success in exploring the phrase “more or less” in many languages here is a task of a similar nature

There is a saying in Hebrew: 

“Troubles come in packages” 

צרות באות בצרורות 

“Tzarot Baot bitzrorot”.

 I am curious about analogs in other languages of this phrase.

Is there such a phrase in your language? (Or some other language that you know.) And what does it literally sais? Please, please contribute! (Other comments, links, and relevant pictures are welcomed.)

I got interested in this saying in the context of studying noise-models for fault-tolerant computation and specifically spontaneous error-synchronization, it  can also serve us also in the context of financial collapses.

Noise Stability and Threshold Circuits

The purpose of this post is to describe an old conjecture (or guesses, see this post) by Itai Benjamini, Oded Schramm and myself (taken from this paper) on noise stability of threshold functions. I will start by formulating the conjectures and a little later I will explain further the notions I am using.

The conjectures

Conjecture 1:  Let f be a monotone Boolean function described by  monotone threshold circuits of size M and depth D. Then f is  stable to (1/t)-noise where t=(\log M)^{100D}.  

Conjecture 2:   Let f be a monotone Boolean function described by  a threshold circuits of size M and depth D. Then f is  stable to (1/t)-noise where t=(\log M)^{100D}.

The constant 100 in the exponent is, of course, negotiable. In fact, replacing 100D with any  function of D will be sufficient for the applications we have in mind. The best we can hope for is that the conjectures are true if  t behaves like  t=(\log M)^{D-1}.  

Conjecture 1 is plausible but it looks difficult. The stronger Conjecture 2 while tempting is quite reckless. Note that the conjectures differ “only” in the location of the word “monotone”. Continue reading

When Noise Accumulates

I wrote a short paper entitled “when noise accumulates” that contains the main conceptual points (described rather formally) of my work regarding noisy quantum computers.  Here is the paper. (Update: Here is a new version, Dec 2010.) The new exciting innovation in computer science conference in  Beijing seemed tailor made for this kind of work, but the paper did not make it that far. Let me quote the first few paragraphs. As always, remarks are welcome!

From the introduction: Quantum computers were offered by Feynman and others and formally described by Deutsch, who also suggested that they can outperform classical computers. The idea was that since computations in quantum physics require an exponential number of steps on digital computers, computers based on quantum physics may outperform classical computers. A spectacular support for this idea came with Shor’s theorem that asserts that factoring is in BQP (the complexity class described by quantum computers).

The feasibility of computationally superior quantum computers is one of the most fascinating and clear-cut scientific problems of our time. The main concern regarding quantum-computer feasibility is that quantum systems are inherently noisy. (This concern was put forward in the mid-90s by Landauer, Unruh, and others.) 

The theory of quantum error correction and fault-tolerant quantum computation (FTQC) and, in particular, the threshold theorem which asserts that under certain conditions FTQC is possible, provides strong support for the possibility of building quantum computers. 

However, as far as we know, quantum error correction and quantum fault tolerance (and the highly entangled quantum states that enable them) are not experienced in natural quantum processes. It is therefore not clear if computationally superior quantum computation is necessary to describe natural quantum processes.

We will try to address two closely related questions. The first is, what are the properties of quantum processes that do not exhibit quantum fault tolerance and how to formally model such processes. The second is, what kind of noise models cause quantum error correction and FTQC to fail.

A main point we would like to make is that it is possible that there is  a systematic relation between the noise and the intended state of a quantum computer. Such a systematic relation does not violate linearity of quantum mechanics, and it is expected to occur in processes that do not exhibit fault tolerance.

Let me give an example: suppose that we want to simulate on a noisy quantum computer a certain bosonic state. The standard view of noisy quantum computers asserts that under certain conditions this can be done up to some error that is described by the computational basis. In contrast, the type of noise we expect amounts to having a mixed state between the intended bosonic state and other bosonic states (that represent the noise).

Criticism: A criticism expressed by several readers of an early version of this paper is that no attempt is made to motivate the conjectures from a physical point of view and that the suggestions seem “unphysical.” What can justify the assumption that a given error lasts for a constant fraction of the entire length of the process? If a noisy quantum computer at a highly entangled state has correlated noise between faraway qubits as  we suggest, wouldn’t it allow signaling faster than the speed of light?

I had sort of a mixed reaction toward this criticism. On the one hand I think that it is important and may be fruitful  to examine various models of noise while putting the physics aside. Nevertheless, I added a  brief discussion of  some physical aspects. Here it is: 

Continue reading