Why is Mathematics Possible: Tim Gowers’s Take on the Matter

lnc math

In a previous post I mentioned the question of why is mathematics possible. Among the interesting comments to the post, here is a comment by Tim Gowers:

“Maybe the following would be a way of rephrasing your question. We know that undecidability results don’t show that mathematics is impossible, since we are interested in a tiny fraction of mathematical statements, and in practice only in a tiny fraction of possible proofs (roughly speaking, the comprehensible ones). But why is it that these two classes match up so well? Why is it that nice mathematical statements so often have proofs that are of the kind that we are able to discover?

Continue reading