Recent Comments
-
Recent Posts
- Algorithmic Game Theory: Past, Present, and Future
- Richard Stanley: Enumerative and Algebraic Combinatorics in the1960’s and 1970’s
- Igor Pak: How I chose Enumerative Combinatorics
- Quantum Computers: A Brief Assessment of Progress in the Past Decade
- Noga Alon and Udi Hrushovski won the 2022 Shaw Prize
- Oliver Janzer and Benny Sudakov Settled the Erdős-Sauer Problem
- Past and Future Events
- Joshua Hinman proved Bárány’s conjecture on face numbers of polytopes, and Lei Xue proved a lower bound conjecture by Grünbaum.
- Amazing: Jinyoung Park and Huy Tuan Pham settled the expectation threshold conjecture!
Top Posts & Pages
- Algorithmic Game Theory: Past, Present, and Future
- Amazing: Jinyoung Park and Huy Tuan Pham settled the expectation threshold conjecture!
- The Argument Against Quantum Computers - A Very Short Introduction
- Oliver Janzer and Benny Sudakov Settled the Erdős-Sauer Problem
- Combinatorics, Mathematics, Academics, Polemics, ...
- Quantum Computers: A Brief Assessment of Progress in the Past Decade
- Richard Stanley: Enumerative and Algebraic Combinatorics in the1960’s and 1970’s
- TYI 30: Expected number of Dice throws
- Amazing! Keith Frankston, Jeff Kahn, Bhargav Narayanan, Jinyoung Park: Thresholds versus fractional expectation-thresholds
RSS
Tag Archives: polymath1
The Cap-Set Problem and Frankl-Rodl Theorem (C)
Update: This is a third of three posts (part I, part II) proposing some extensions of the cap set problem and some connections with the Frankl Rodl theorem. Here is a post presenting the problem on Terry Tao’s blog (March 2007). Here … Continue reading
Around the Cap-Set problem (B)
Part B: Finding special cap sets This is a second part in a 3-part series about variations on the cap set problem that I studied with Roy Meshulam. (The first post is here.) I will use here a different notation than in part … Continue reading
An Open Discussion and Polls: Around Roth’s Theorem
Suppose that is a subset of of maximum cardinality not containing an arithmetic progression of length 3. Let . How does behave? We do not really know. Will it help talking about it? Can we somehow look beyond the horizon and try to guess what … Continue reading
Posted in Combinatorics, Open discussion, Open problems
Tagged Cap sets, polymath1, Roth's theorem, Szemeredi's theorem
29 Comments
Polymath1: Success!
“polymath” based on internet image search And here is a link to the current draft of the paper. Update: March 26, the name of the post originally entitled “Polymath1: Probable Success!” was now updated to “Polymath1: Success!” It is now becoming … Continue reading
Posted in Blogging, Combinatorics, What is Mathematics
Tagged Density Hales-Jewett theorem, polymath1, Tim Gowers
10 Comments
Frankl-Rodl’s Theorem and Variations on the Cap Set Problem: A Recent Research Project with Roy Meshulam (A)
Voita Rodl I would like to tell you about a research project in progress with Roy Meshulam. (We started it in the summer, but then moved to other things; so far there are interesting insights, and perhaps problems, but not substantial … Continue reading
Posted in Combinatorics, Open problems
Tagged Cap sets, Extremal combinatorics, Intersection theorems, polymath1
10 Comments
Mathematics, Science, and Blogs
Michael Nielsen wrote a lovely essay entitled “Doing science online” about mathematics, science, and blogs. Michael’s primary example is a post over Terry Tao’s blog about the Navier-Stokes equation and he suggests blogs as a way of scaling up scientific conversation. Michael is writing … Continue reading
Posted in Blogging, What is Mathematics
Tagged Blogs, Michael Nielsen, Open science, polymath1, Tim Gowers
5 Comments