Recent Comments
-
Recent Posts
- Questions and Concerns About Google’s Quantum Supremacy Claim
- Physics Related News: Israel Joining CERN, Pugwash and Global Zero, The Replication Crisis, and MAX the Damon.
- Test your intuition 52: Can you predict the ratios of ones?
- Amnon Shashua’s lecture at Reichman University: A Deep Dive into LLMs and their Future Impact.
- Mathematics (mainly combinatorics) related matters: A lot of activity.
- Alef Corner: Deep Learning 2020, 2030, 2040
- Some Problems
- Critical Times in Israel: Last Night’s Demonstrations
- An Aperiodic Monotile
Top Posts & Pages
- Questions and Concerns About Google’s Quantum Supremacy Claim
- An Aperiodic Monotile
- Test your intuition 52: Can you predict the ratios of ones?
- A Mysterious Duality Relation for 4-dimensional Polytopes.
- TYI 30: Expected number of Dice throws
- Quantum Computers: A Brief Assessment of Progress in the Past Decade
- The Simplex, the Cyclic polytope, the Positroidron, the Amplituhedron, and Beyond
- A Nice Example Related to the Frankl Conjecture
- Answer: Lord Kelvin, The Age of the Earth, and the Age of the Sun
RSS
Tag Archives: Roth’s theorem
A Couple Updates on the Advances-in-Combinatorics Updates
In a recent post I mentioned quite a few remarkable recent developments in combinatorics. Let me mention a couple more. Independent sets in regular graphs A challenging conjecture by Noga Alon and Jeff Kahn in graph theory was about the number of … Continue reading
Posted in Combinatorics, Open problems, Updates
Tagged Independent sets in graphs, Roth's theorem
4 Comments
Roth’s Theorem: Tom Sanders Reaches the Logarithmic Barrier
Click here for the most recent polymath3 research thread. I missed Tom by a few minutes at Mittag-Leffler Institute a year and a half ago Suppose that is a subset of of maximum cardinality not containing an arithmetic progression of length 3. Let . … Continue reading
Posted in Combinatorics, Open problems
Tagged Endre Szemeredi, Jean Bourgain, Klaus Roth, Roger Heath-Brown, Roth's theorem, Tom Sanders
12 Comments
Around the Cap-Set problem (B)
Part B: Finding special cap sets This is a second part in a 3-part series about variations on the cap set problem that I studied with Roy Meshulam. (The first post is here.) I will use here a different notation than in part … Continue reading
An Open Discussion and Polls: Around Roth’s Theorem
Suppose that is a subset of of maximum cardinality not containing an arithmetic progression of length 3. Let . How does behave? We do not really know. Will it help talking about it? Can we somehow look beyond the horizon and try to guess what … Continue reading
Posted in Combinatorics, Open discussion, Open problems
Tagged Cap sets, polymath1, Roth's theorem, Szemeredi's theorem
30 Comments
Pushing Behrend Around
Erdos and Turan asked in 1936: What is the largest subset of {1,2,…,n} without a 3-term arithmetic progression? In 1946 Behrend found an example with Now, sixty years later, Michael Elkin pushed the the factor from the denominator to the enumerator, … Continue reading
Posted in Combinatorics, Updates
Tagged Arithmetic progressions, Roth's theorem, Szemeredi's theorem
15 Comments