Tag Archives: Scott Aaronson

Quantum computing: achievable reality or unrealistic dream

QC-michel-view QC-gilview

Michel Dyakonov’s View on QC                                     My view (based on Michel’s drawing*)

Update:

my_qc_world

Alexander Vlasov’s view (based on Michel and Konstantin’s drawing)

It has been a while since I devoted a post to quantum computation. Meanwhile, we had a cozy, almost private, easy-going, and very interesting discussion thread on my previous, March 2014 post (that featured my Simons Institute videotaped lectures (I,II).)

What can we learn from a failure of quantum computers?

Last week we had a workshop on “Quantum computing: achievable reality or unrealistic dream.” This was a joint venture of the  American Physics Society and the Racah Institute of Physics here at HUJI, organized by Professor Miron Ya. Amusia, and it featured me and Nadav Katz as the main speakers. Here are the slides of my lecture: What can we learn from a failure of quantum computers.

pred1

Noise Sensitivity and BosonSampling

Earlier, I gave a lecture in our CS colloquium about a recent work with Guy Kindler on noise sensitivity of BosonSampling. We show that for a constant level of noise, noisy BosonSampling can be approximated by bounded-depth computation, and that the correlation between the noisy outcome and the noiseless outcome tends to zero if the noise level is ω(1/n) where n is the number of bosons.  Here is the paper Gaussian noise sensitivity and BosonSampling, the videotaped lecture  Complexity and sensitivity of noisy BosonSampling, and the slides of the lecture.

Contagious error sources would need time travel to prevent quantum computation

On the positive side, Greg Kuperberg and I wrote a paper  Contagious error sources would need time travel to prevent quantum computation  showing that for a large class of correlated noise, (teleportation-based) quantum fault-tolerance works! Greg and I have had a decade-long email discussion (over 2000 emails) regarding quantum computers, and this work grew from our 2009 discussion (about my “smoothed Lindblad evolution” model), and heavily relies on  ideas of Manny Knill.

Nadav Katz: Quantum information science – the state of the art

Some years ago, two brilliant experimentalists, Hagai Eisenberg and Nadav Katz,  joined  the already strong, mainly theoretical, quantum information group here at HUJI.  Nadav Katz gave the second lecture in the workshop, and here are the slides of Nadav’s  lecture: Quantum information science – the state of the art.

nadavtalk

Experimental progress toward stable encoded qubits

Also very much on the positive side, Nadav mentioned a remarkable recent progress by the Martini’s group showing certain encoded states based on 9 physical qubits which are order-of-magnitude (factor 8.4, to be precise,) more stable than the “raw” qubits used for creating them !!

Here is a link to the paper:  State preservation by repetitive error detection in a superconducting quantum circuit, by J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jeffrey, T. C. White, D. Sank, J. Y. Mutus, B. Campbell, Yu Chen, Z. Chen, B. Chiaro, A. Dunsworth, I.-C. Hoi, C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, A. Vainsencher, J. Wenner, A. N. Cleland, and John M. Martinis.

Update:  Further comments on a Shtetl-optimized post (especially a comment by Graeme Smith,) help to place the new achievement of the Martinis group within the seven smilestones toward quantum computers from a 2012 Science paper by Schoelkopf and Devoret, originated by David DiVincenzo’s 2000 paper “The physical implementation of quantum computation“. (You can watch these milestone here also .)

The new achievement of having a very robust realization of certain encoded states can be seen as achieving the 3.5 milestone.   The difference between the 3.5th milestone and the 4th milestone plays a central role in the seventh post of my 2012-debate with Aram Harrow in connection with a conjecture I made in the first post (“Conjecture 1″). Aram made the point that classical error-correction can lead to very stable encoded qubits in certain states (which is essentially the 3.5 milestone). I gave a formal description of the conjecture, which essentially asserts that the 4th milestone, namely insisting that encoded qubits allows arbitrary superpositions, cannot be reached.  As I said many times (see, for example, the discussion in my 2012 Simons Institute videotaped lecture 2), a convincing demonstration of the 4th milestone, namely  implementation of quantum error-correction with encoded qubits which are substantially more stable than the raw qubits (and allow arbitrary superposition for the encoded qubit) will disprove my conjectures. Such stable encoded qubits are  expected from implementations of distance-5 surface code. So we are 0.5 milestones away :)

I will be impressed to see even a realization of distance-3 (or distance-5) surface code that will give good quality encoded qubits, even if the encoded qubits will have a quality which is somewhat worse than that of the raw qubits used for the encoding. These experiments, including those that were already carried out, also give various other opportunities to test my conjectures.

Peter Shor’s challenge #1 and my predictions from the failure of quantum computation

My lecture on predictions from the failure of QC is based on two lengthy recent comments (first, second) regarding predictions from the failure of quantum computers. On April 2014, Peter Shor challenged me with the following: Continue reading

Scott Triumphs* at the Shtetl

Scott Aaronson wrote a new post on the Shtetl Optimized** reflecting on the previous thread  (that I referred to in my post on Amy’s triumph), and on reactions to this thread. The highlight is a list of nine of Scott’s core beliefs. This is a remarkable document and I urge everybody to read it. Yes, Scott’s core beliefs come across as feminist! Let me quote one of them.

7. I believe that no one should be ashamed of inborn sexual desires: not straight men, not straight women, not gays, not lesbians, not even pedophiles (though in the last case, there might really be no moral solution other than a lifetime of unfulfilled longing).  Indeed, I’ve always felt a special kinship with gays and lesbians, precisely because the sense of having to hide from the world, of being hissed at for a sexual makeup that you never chose, is one that I can relate to on a visceral level.  This is one reason why I’ve staunchly supported gay marriage since adolescence, when it was still radical.  It’s also why the tragedy of Alan Turing, of his court-ordered chemical castration and subsequent suicide, was one of the formative influences of my life.

!! (***)

In the sacred tradition of arguing with Scott I raised some issues with #5 and 4# on Scott’s blog. Two of Scott’s points are on the subject of (young) people’s suffering by feeling unwanted, sexually invisible, or ashamed to express their desires.

I was pleased to see that those feminist matters that Scott and I disagree about, like the nature of prostitution, the role of feminist views in men’s (or nerdy men’s) suffering, and also Scott’s take on poverty, did not make it to Scott’s core beliefs.

Happy new year, everybody!

* The word triumph is used here (again) in a soft (non-macho) way characteristic to the successes of feminism. Voting rights for women did not exclude voting rights for men, and Scott’s triumph does not mean a defeat for  any others; on the contrary.

** “Shtetl-optimized” is the name of Scott Aaronson’s blog.

*** In my opinion, when a person has an uncontrollable urge or strong temptation or desire to commit a crime towards another individual (or even to inflict much damage on another person when it is not criminal, or to commit other crimes), shame and guilt feelings can be instrumental in controlling such urges.

Aaronson and Arkhipov’s Result on Hierarchy Collapse

hc

Scott Aaronson gave a thought-provoking lecture in our Theory seminar three weeks ago.  (Actually, this was eleven months ago.) The slides are here . The lecture discussed two results regarding the computational power of quantum computers. One result from this paper gives an oracle-evidence that there are problems in BQP outside the polynomial hierarchy.  The method is based on “magnification” of results on bounded depth circuits. (It is related to the Linial-Nisan conjecture.)

The second result that we are going to discuss in this post (along with some of my provoked thoughts) is a recent result of Scott Aaronson and Alex Arkhipov which asserts that if  the power of quantum computers can be simulated by digital computers  then the polynomial hierarchy collapses.  More precisely, their result asserts that if sampling  probability distribution created by quantum computers (this is abbreviated as QSAMPLE) is in P then the polynomial hieararchy collapses to its third level.

The beautiful and important paper of Aaronson and Arkhipov is now out. Its main point of view is related to what I describe in the sixth section about “photon machines”. Update: Let me mention related idependent results by Michael J. Bremner, Richard Jozsa, Dan J. Shepherd in the paper entitled: “Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy“.

Here is the plan for this post

1) The polynomial hierarchy and results about hierarchy collapse

2) The Aaronson Arkhipov (AA) theorem and its proof

3) Two problems posed by AA

Those are: does P=BQP already leads to a collapse of the polynomial hierarchy? And does APPROXIMATE-QSAMPLE already leads to a collapse?

4) Does fault tolerance allow QSAMPLE (on the nose)? (Answer: yes)

5) Is there a quantum analog to Aaronson and Arkhipov’s result and what is the computational power of quantum computers?

6) Three Two competing scenarios

7) Aaronson and Arkhipov photon machines and the complexity class BOSONSAMPLING.

Continue reading