Recent Comments
-
Recent Posts
- The Trifference Problem
- Greatest Hits 2015-2022, Part II
- Greatest Hits 2015-2022, Part I
- Tel Aviv University Theory Fest is Starting Tomorrow
- Alef’s Corner
- A Nice Example Related to the Frankl Conjecture
- Amazing: Justin Gilmer gave a constant lower bound for the union-closed sets conjecture
- Barnabás Janzer: Rotation inside convex Kakeya sets
- Inaugural address at the Hungarian Academy of Science: The Quantum Computer – A Miracle or Mirage
Top Posts & Pages
- Answer: Lord Kelvin, The Age of the Earth, and the Age of the Sun
- Amazing: Justin Gilmer gave a constant lower bound for the union-closed sets conjecture
- Amazing: Jinyoung Park and Huy Tuan Pham settled the expectation threshold conjecture!
- Quantum Computers: A Brief Assessment of Progress in the Past Decade
- A Nice Example Related to the Frankl Conjecture
- The Trifference Problem
- TYI 30: Expected number of Dice throws
- Sarkaria's Proof of Tverberg's Theorem 1
- Aubrey de Grey: The chromatic number of the plane is at least 5
RSS
Tag Archives: Trees
Lawler-Kozdron-Richards-Stroock’s combined Proof for the Matrix-Tree theorem and Wilson’s Theorem
David Wilson and a cover of Shlomo’s recent book “Curvature in mathematics and physics” A few weeks ago, in David Kazhdan’s basic notion seminar, Shlomo Sternberg gave a lovely presentation Kirchhoff and Wilson via Kozdron and Stroock. The lecture is based on … Continue reading
Posted in Combinatorics, Computer Science and Optimization, Probability
Tagged David Wilson, Gustav Kirchhoff, Trees
4 Comments
A Proof by Induction with a Difficulty
The time has come to prove that the number of edges in every finite tree is one less than the number of vertices (a tree is a connected graph with no cycle). The proof is by induction, but first you need … Continue reading
A Beautiful Garden of Hypertrees
We had a series of posts (1,2,3,4) “from Helly to Cayley” on weighted enumeration of Q-acyclic simplicial complexes. The simplest case beyond Cayley’s theorem were Q-acyclic complexes with vertices, edges, and triangles. One example is the six-vertex triangulation of the … Continue reading
Posted in Combinatorics
Tagged Mishael Rosenthal, Nati Linial, Roy Meshulam, Topological combinatorics, Trees
1 Comment
Helly’s Theorem, “Hypertrees”, and Strange Enumeration I
1. Helly’s theorem and Cayley’s formula Helly’s theorem asserts: For a family of n convex sets in , n > d, if every d+1 sets in the family have a point in common then all members in the family have a point in common. … Continue reading
Posted in Combinatorics, Convexity
Tagged Cayley theorem, Helly Theorem, Simplicial complexes, Topological combinatorics, Trees
10 Comments